• 제목/요약/키워드: Compression Hip Screw (CHS)

검색결과 4건 처리시간 0.019초

생체 역학적 분석에 의한 Compression Hip Screw의 디자인 요소에 대한 평가 (Mechanical Response of Changes in Design of Compression Hip Screws with Biomechanical Analysis)

  • 문수정;이희성;권순영;이성재;안세영;이훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1172-1175
    • /
    • 2004
  • At present, CHS(Compression Hip Screw) is one of the best prosthesis for the intertrochanteric fracture. There is nothing to evaluate the CHS itself with the finite element analysis and mechanical tests. They have same ways of the experimental test of the ASTM standards. The purpose of this study is to evaluate the existing CHS and the new CHS which have transformational design factors with finite element analysis and mechanical tests. The mechanical tests are divided into compression tests and fatigue test for evaluating the failure load, strength and fatigue life. This finite element method is same as the experimental test of the ASTM standards. Under 300N of compression load at the lag screw head. There are less differences between Group (5H, basic type) and Group which has 8 screw holes. However, there are lots of big differences between Group and Group which is reinforced about thickness of the neck range. Moreover, the comparison of Group and Group shows similar tendency of the comparison of Group and Group . The Group is reinforced the neck range from Group. After the experimental tests and the finite element analysis, the most effective design factor of the compression hip screws is the reinforcement of the thickness, even though, there are lots of design factors. Moreover, to unite the lag screw with the plate and to analyze by static analysis, the result of this method can be used with experimental test or instead of it.

  • PDF

Outcomes of Internal Fixation with Compression Hip Screws in Lateral Decubitus Position for Treatment of Femoral Intertrochanteric Fractures

  • Park, Cheon-Gon;Yoon, Taek-Rim;Park, Kyung-Soon
    • Hip & pelvis
    • /
    • 제30권4호
    • /
    • pp.254-259
    • /
    • 2018
  • Purpose: Internal fixation using compression hip screws (CHS) and traction tables placing patients in the supine position is a gold standard option for treating intertrochanteric fractures; however, at our institution, we approach this treatment with patients in a lateral decubitus position. Here, the results of 100 consecutive elderly (i.e., ${\geq}45$ years of age) patients who underwent internal fixation with CHS in lateral decubitus position are analyzed. Materials and Methods: Between March 2009 and May 2011, 100 consecutive elderly patients who underwent internal fixation with CHS for femoral intertrochanteric fracture were retrospectively reviewed. Clinical outcomes (i.e., Koval score, Harris hip score [HHS]) and radiographic outcomes (i.e., bone union time, amount of sliding of lag screw, tip-apex distance [TAD]) were evaluated. Results: Clinical assessments revealed that the average postoperative Koval score decreased from 1.4 to 2.6 (range, 0-5; P<0.05); HHS was 85 (range, 72-90); and mean bone union time was 5.0 (range, 2.0-8.2) months. Radiographic assessments revealed that anteroposterior average TAD was 6.95 (range, 1.27-14.63) mm; lateral average TAD was 7.26 (range, 1.20-18.43) mm; total average TAD was 14.21 (range, 2.47-28.66) mm; average lag screw sliding was 4.63 (range, 0-44.81) mm; and average angulation was varus $0.72^{\circ}$(range, $-7.6^{\circ}-12.7^{\circ}$). There were no cases of screw tip migration or nonunion, however, there were four cases of excessive screw sliding and six cases of varus angulation at more than $5^{\circ}$. Conclusion: CHS fixation in lateral decubitus position provides favorable clinical and radiological outcomes. This technique is advisable for regular CHS fixation of intertrochanteric fractures.

Changes In Mechanical Strength of Compression HIP Screws in Relation to Design Variations - A Biomechanical Analysis

  • Moon S. J.;Lee H. S.;Jun S. C.;Jung T. G.;Ahn S. Y.;Lee H.;Lee S. J.
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권2호
    • /
    • pp.123-127
    • /
    • 2005
  • Compression Hip Screw (CHS) is one of the most widely-used prostheses for the treatment of intertrochanteric fractures because of its strong fixation capability. Fractures at the neck and screw holes are frequently noted as some of its clinical drawbacks, which warrant more in-depth biomechanical analysis on its design variables. The purpose of this study was to evaluate changes in the strength with respect to the changes in design such as the plate thickness and the number of screw holes. Both mechanical test and FEM analysis were used to systematically investigate the sensitivities of the above-mentioned design variables. For the first part of the mechanical test, CHS (n=20) were tested until failure. The CHS specimens were classified into four groups: Group Ⅰ was the control group with the neck thickness of 6-㎜ and 5 screw holes on the side plate, Group Ⅱ 6-㎜ thick and 8 holes, Group Ⅲ 7.5-㎜ thick and 5 holes, and Group Ⅳ 7.5-㎜ thick and 8 holes. Then, the fatigue test was done for each group by imparting 50% and 75% of the failure loads for one million cycles. For the FEM analysis, FE models were made for each group. Appropriate loading and boundary conditions were applied based on the failure test results. Stresses were assessed. Mechanical test results indicated that the failure strength increased dramatically by 80% with thicker plate. However, the strength remained unchanged or decreased slightly despite the increase in number of holes. These results indicated the higher sensitivity of plate thickness to the implant strength. No fatigue failures were observed which suggested the implant could withstand at least one million cycles of fatigue load regardless of the design changes. Our FEM results also supported the above results by showing a similar trend in stress as those of mechanical test. In summary, our biomechanical results were able to show that plate thickness could be a more important variable in design for reinforcing the strength of CHS than the number of screw holes.