• Title/Summary/Keyword: Compression Effect

Search Result 2,025, Processing Time 0.03 seconds

Influence of Implant Designs on Initial Stability (임플란트의 형태가 초기 안정성에 미치는 영향)

  • Cho, Jae-Myoung;Kim, Chang-Seop;Yun, Mi-Jung;Jeong, Chang-Mo;Seo, Seung-U
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • An undisturbed healing process without micromotion at the implant-bone interface is essential for achievement of osseointegration of dental implant. Therefore, initial stability was advocated as prerequisite for successful clinical outcome. Adequate bone quality and quantity were important to achieve initial stability and to prevent early failures. However there were few published data available regarding the effect of design change in implant geometry on initial stability of the implants. The purpose of the current study was to assess the initial stability of various designs of implants when placed into artificial bone materials of varying qualities and shapes of insertion holes. Within the scope of this study, the following results were drawn. Bone quality was major importance to achieve initial stability. Initial stability was higher on GS II which had additional design feature of double thread. With a tapered design of implant such as GS III showed a higher initial stability than straight one. An insertion hole with the similar shape of implant would lead to reduce a compression force on cortical bone and enhance a bone anchorage on cancellous bone.

Design and Implementation of Efficient Decoder for Fractal-based Compressed Image (효율적 프랙탈 영상 압축 복호기의 설계 및 구현)

  • Kim, Chun-Ho;Kim Lee-Sup
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.11-19
    • /
    • 1999
  • Fractal image compression algorithm has been studied mostly not in the view of hardware but software. However, a general processor by software can't decode fractal compressed images in real-time. Therefore, it is necessary that we develop a fast dedicated hardware. However, design examples of dedicated hardware are very rare. In this paper, we designed a quadtree fractal-based compressed image decoder which can decode $256{\times}256$ gray-scale images in real-time and used two power-down methods. The first is a hardware-optimized simple post-processing, whose role is to remove block effect appeared after reconstruction, and which is easier to be implemented in hardware than non-2' exponents weighted average method used in conventional software implementation, lessens costs, and accelerates post-processing speed by about 69%. Therefore, we can expect that the method dissipates low power and low energy. The second is to design a power dissipation in the multiplier can be reduced by about 28% with respect to a general array multiplier which is known efficient for low power design in the size of 8 bits or smaller. Using the above two power-down methods, we designed decoder's core block in 3.3V, 1 poly 3 metal, $0.6{\mu}m$ CMOS technology.

  • PDF

A study of feasibility of using compressed wood for LNG cargo containment system (압축목재를 사용한 LNG 화물창 단열시스템의 적합성 평가에 관한 연구)

  • Kim, Jong-Hwan;Ryu, Dong-Man;Park, Seong-Bo;Noh, Byeong-Jae;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.307-313
    • /
    • 2016
  • When liquefied natural gas (LNG) is stored in a tank, it is necessary to maintain low temperature. It is very important that insulation techniques are applied to the LNG cargo because of this extreme environment. Hence, laminated wood, especially plywood, is widely used as the structural member and insulation material in LNG cargo containment systems (CCS). However, fracture of plywood has been reported recently, owing to sloshing effect. Therefore, it is necessary to increase the strength of the structural member for solving the problem. In this study, compressed wood, which is used as a support in LNG independent type B tanks, was considered as a substitute for plywood. Compression and bending tests were performed on compressed wood under ambient and cryogenic temperatures to estimate the mechanical behaviors and fracture characteristics. In addition, the direction normal to the laminates surface was considered as an experimental variable. Finally, the feasibility of using compressed wood for an LNG CCS was evaluated from the test results.

Improving Charge Injection Characteristics and Electrical Performances of Polymer Field-Effect Transistors by Selective Surface Energy Control of Electrode-Contacted Substrate (에폭시 개질 한 다관능 아크릴레이트를 포함하는 충격 저항성이 향상된 불포화폴리에스터 SMC (Sheet Molding Compound) 소재제조 및 그의 물성연구)

  • Jang, Jeong Beom;Kim, Taehee;Kim, Hye Jin;Lee, Wonjoo;Seo, Bongkuk;Kim, Yongsung;Kim, Changyoon;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.101-106
    • /
    • 2020
  • In this study, epoxy-modified acrylate was synthesized. The synthesized acrylate was added to the composition for sheet molding compound (SMC) in the range of 5 phr to 15 phr. The prepared SMC prepreg was molded at high temperature and pressure to produce a glass fiber reinforced composite. Physical properties such as tensile and impact strength of the composite were measured, respectively. Experimental data show that the composite with 5 phr of synthesized acrylate has 20% improved tensile strength and 12% improved impact strength than that of the reference sample.

Flange Local Buckling(FLB) for Flexural Strength of Plate Girders with High Performance Steel(HSB 800) (고성능 강재(HSB 800)를 적용한 플레이트 거더의 휨강도에 대한 플랜지 국부좌굴)

  • Kim, Jeong Hun;Kim, Kyoung Yul;Lee, Jeong Hwa;Kim, Kyung Sik;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.91-103
    • /
    • 2014
  • High performance steel for bridges(HSB 800) with a minimum tensile stress of 800MPa was recently developed. However, the study for local buckling behavior of plate girders considering interactive effects of flanges and webs is still insufficient. In this study, the flange local buckling(FLB) strength of plate girders with HSB 800 was evaluated by nonlinear finite element analysis. The flanges and webs of plate girders having I-section were modeled as 3D shell elements in the nonlinear analysis. Initial imperfection and residual stress were imposed on the plate girder. The high performance steel was modeled as a multi-linear material. Thus, parametric study of compression flanges with a compact, noncompact and slender web was performed. The flange local buckling behavior of plate girders was analyzed, and the nonlinear analysis results were compared with the nominal flexural strength of both AASHTO LRFD(2012) and KHBDC LSD(2012) codes.

A Proposal for an Evaluation of Flexural Resistance of Longitudinally Stiffened Plate Girder with Slender Web (수평보강재로 보강된 세장 복부판을 갖는 플레이트 거더의 휨강도 평가 방법의 제안)

  • Park, Yong Myung;Lee, Kun Joon;Choi, Byung Ho;Back, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.119-132
    • /
    • 2014
  • In this paper, a series of numerical analyses were performed to evaluate the flexural resistance of steel plate girder with longitudinally stiffened and slender web. The SM490 steel was adopted for the study and the flexural resistances evaluated from the numerical analysis were compared with those suggested by the AASHTO LRFD and the Eurocode 3 codes, respectively. It was found that the AASHTO LRFD code could considerably underestimate the flexural resistance as the web slenderness becomes smaller. This comes from the fact that current AASHTO LRFD code does not consider a possible increase of slenderness limits for compact and noncompct web, and also an additional effect of web restraint on the rotation of compression flange in longitudinally stiffened web. Therefore, the slenderness limits of web and flange have been newly proposed for the plate girders with longitudinally stiffened web and it is analytically verified that the flexural resistance can be appropriately estimated by applying the proposed slenderness limits to the AASHTO LRFD code.

Fabrication of IMT-2000 Linear Power Amplifier using Current Control Adaptation Method in Signal Cancelling Loop (신호 제거 궤환부의 전류 제어 적응형 알고리즘을 이용한 IMT-2000용 선형화 증폭기 제작)

  • 오인열;이창희;정기혁;조진용;라극한
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.1
    • /
    • pp.24-36
    • /
    • 2003
  • The digital mobile communication will be developed till getting multimedia service in anyone, any where, any time. Theses requiring items are going to be come true via IMT-2000 system. Transmitting signal bandwidth of IMT-2000 system is 3 times as large as IS-95 system. That is mean peak to average of signal is higher than IS-95A system. So we have to design it carefully not to effect in adjacent channel. HPA(High Power Amplifier) located in the end point of system is operated in 1-㏈ compression point(Pl㏈), then it generates 3rd and 5th inter modulation signals. Theses signals affect at adjacent channel and RF signal is distorted by compressed signal which is operated near by Pl㏈ point. Then the most important design factor is how we make HPA having high linearity. Feedback, Pre-distorter and Feed-forward methods are presented to solve theses problems. Feed-forward of these methods is having excellent improving capacity, but composed with complex structure. Generally, Linearity and Efficiency in power amplifier operate in the contrary, then it is difficult for us to find optimal operating point. In this paper we applied algorithm which searches optimal point of linear characteristics, which is key in Power Amplifier, using minimum current point of error amplifier in 1st loop. And we made 2nd loop compose with new structure. We confirmed fabricated LPA is operated by having high linearity and minimum current condition with ACPR of -26 ㏈m max. @ 30㎑ BW in 3.515㎒ and ACLR of 48 ㏈c max@${\pm}$㎒ from 1W to 40W.

Engineering Characteristics of Liquid Filler Using Marine Clay and In-situ Soil (해양점토와 현장토를 활용한 유동성 채움재의 공학적 특성)

  • Oh, Sewook;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.25-32
    • /
    • 2020
  • The underground utilities installed under the ground is an important civil engineering structure, such as water supply and sewerage pipes, underground power lines, various communication lines, and city gas pipes. Such underground utilities can be exposed to risk due to external factors such as concentrated rainfall and vehicle load, and it is important to select and construct an appropriate backfill material. Currently, a method mainly used is to fill the soil around the underground utilities and compact it. But it is difficult to compact the lower part of the buried pipe and the compaction efficiency decreases, reducing the stability of the underground utilities and causing various damages. In addition, there are disadvantages such as a decrease in ground strength due to disturbance of the ground, a complicated construction process, and construction costs increase because the construction period becomes longer, and civil complaints due to traffic restrictions. One way to solve this problem is to use a liquid filler. The liquid filler has advantages such as self-leveling ability, self-compaction, fluidity, artificial strength control, and low strength that can be re-excavated for maintenance. In this study, uniaxial compression strength test and fluidity test were performed to characterize the mixed soil using marine clay, stabilizer, and in-situ soil as backfill material. A freezing-thawing test was performed to understand the strength characteristics of the liquid filler by freezing, and in order to examine the effect of the filling materials on the corrosion of the underground pipe, an electrical resistivity test and a pH test were performed.

Effects of using silica fume and lime in the treatment of kaolin soft clay

  • Alrubaye, Ali Jamal;Hasan, Muzamir;Fattah, Mohammed Y.
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.247-255
    • /
    • 2018
  • Soil stabilization can make the soils becoming more stable by using an admixture to the soil. Lime stabilization enhances the engineering properties of soil, which includes reducing soil plasticity, increasing optimum moisture content, decreasing maximum dry density and improving soil compaction. Silica fume is utilized as a pozzolanic material in the application of soil stabilization. Silica fume was once considered non-environmental friendly. In this paper, the materials required are kaolin grade S300, lime and silica fume. The focus of the study is on the determination of the physical properties of the soils tested and the consolidation of kaolin mixed with 6% silica fume and different percentages (3%, 5%, 7% and 9%) of lime. Consolidation test is carried out on the kaolin and the mixtures of soil-lime-silica fume to investigate the effect of lime stabilization with silica fume additives on the consolidation of the mixtures. Based on the results obtained, all soil samples are indicated as soils with medium plasticity. For mixtures with 0% to 9% of lime with 6% SF, the decrease in the maximum dry density is about 15.9% and the increase in the optimum moisture content is about 23.5%. Decreases in the coefficient of permeability of the mixtures occur if compared to the coefficient of permeability of kaolin soft clay itself reduce the compression index (Cc) more than L-SF soil mix due to pozzolanic reaction between lime and silica fume and the optimum percent of lime-silica fume was found to be (5%+6%) mix. The average coefficient of volume compressibility decreases with increasing the stabilizer content due to pozzolanic reaction happening within the soil which results in changes in the soil matrix. Lime content +6% silica fume mix can reduce the coefficient of consolidation from at 3%L+6%SF, thereafter there is an increase from 9%L+6%SF mix. The optimal percentage of lime silica fume combination is attained at 5.0% lime and 6.0% silica fume in order to improve the shear strength of kaolin soft clay. Microstructural development took place in the stabilized soil due to increase in lime content of tertiary clay stabilized with 7% lime and 4% silica fume together.

THE EFFECT OF DENTURE CLEANSERS ON SOFT LINING MATERIALS (의치 세정제가 탄성 의치상 이장재에 미치는 효과에 관한 연구)

  • Jang, Bok-Sook;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.2
    • /
    • pp.219-235
    • /
    • 1993
  • To determine the compatibilities of soft liming materials with denture cleansers by measuring the flexibility and elasticity and investigating the surface changes, 4 self-curing acrylic resin soft lining materials and 1 heat-curing silicone soft lining material were evaluated. 3mm thick x 20mm diameter discs of soft lining materials were individually bonded to a hard acrylic resin base as per manufacturers’instructions. Using an Instron universal testing machine, a static stress of $2kg/cm^2$ was applied for 30secs., the strain in compression was measured, giving an indication of the material’s flexibility. Elastic recovery was measured at 10secs. After removal of stress. Surface changes were investigated with Stereomicroscope. Then the specimens were immersed in 4alkaline peroxide denture cleansers and water as control group, tests were carried out at 1 day, 2 days, 7 days, 14 days and 30 days. The results were as follows : 1. Alkaline peroxide denture cleansers caused considerable porosity on the surface of selfcuring acrylic resin soft lining materials, and the most affected by the cleansers were Viscogel, Coe-Soft, Coe-Comfort, Lynal, in that order. 2. There was significant difference in flexibility between each soft lining material except for Coe-Comfort and Visco-gel, and every soft lining material was significant difference in elasticity. Especially Molloplast-B and Lynal were less flexible and more elastic than other soft lining materials(p<0.05). 3. The denture cleansers increased the flexibility and elasticity of the soft lining materials compared with control group(p<0.05), and Denalan, Polident, Kleenite, Efferdent affected the soft lining materials in that order. 4. There was significant difference in flexibility between each denture cleanser except for Denalan and Polident(p<0.05). Though Denalan and Polident, Denalan and Kleenite did not show significant difference in elasticity, other denture cleansers showed significant difference among each other(p<0.05). 5. Clinically Coe-Comfort, Coe-Soft and Visco-gel were incompatible with alkaline peroxide denture cleansers, and Lynal would be used within only 2 weeks. But Molloplast-B was compatible with alkaline peroxide denture cleansers.

  • PDF