• Title/Summary/Keyword: Compression Effect

Search Result 2,025, Processing Time 0.034 seconds

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.

The Influence of the Direction of Applied Load(Compression and Uplift) and the Diameter of the Pile on the Pile Bearing Capacity (하중 작용 방향(압축과 인발)과 말뚝의 직경이 말뚝 지지력에 미치는 영향)

  • 이명환;윤성진
    • Geotechnical Engineering
    • /
    • v.7 no.3
    • /
    • pp.51-64
    • /
    • 1991
  • The reliable estimation of pile bearing capacity is essential for the improvement of the re- liability and the cost-effectiveness of the design. There have been numerous pile bearing capacity prediction methods proposed up to now, however, execpt for the estimation made from the result of the pile loading test, not one method is appropriate for the reliable prediction. Due to the considerable time and expenses required to carry out the pile loading test, the test has seldom been utilized. The development of Simple Pile Loading Test(SPLT) which utilizes the pile skin friction as the required reaction force to cause the pile tip settlement, provides a solution to perform more pile loading tests and consequently a more economical pile design is possible. The separate measurement of skin friction and tip resistance during the course of performing SPLT provides a better understanding of the pile behavior than the result of the conventional pile loading test where only the total resistance is measured. On the other hand, there are some points to be clarified in order to apply the test results of SPLT to practical problem. They are the direction of the applied load to mobilize the skin friction and the use of reduced sized sliding core. In this research, both the SPLT and the conventional pile loading test on 406mm diameter steel pipe pile have been performed. From the result, it would be safe to use the measured SPLT skin friction value directly in the design, since the value is somewhat lower than the value measured in the conventional test. It is further assumed that the tip resistance value of the reduced sized sliding core should properly be analysed by taking the incluonce of scale effect into consideration.

  • PDF

Material Tests for Module Type Crash Cushion (모듈타입 충격흡수장치를 위한 재료실험)

  • Ko, Man-Gi;Kim, Kee-Dong;Sung, Jung-Gon;Kim, Jin-Man
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.87-95
    • /
    • 2008
  • One way to shield an atypical structure to secure the occupant safety of an impact vehicle is to stack energy absorbing material modules around the structure. To be applicable to a cushion module, material must have enough energy absorbing capabilities while satisfying the safety requirements of the vehicle occupant. Static compression test of the potential materials gives a good indication which material is good for a slacking module. This paper presents the mechanical properties that a cushion material must have to satisfy the safety requirements. Static tests are performed for Quard-Guard system module, sand bag, recycled tires, Geo-Container, Geo-Cell and Expanded Polystyren (EPS) Blocks. Static test results are discussed and EPS block of $30kg/m^{3}$ density showed good potential for a cushion module. To check the dynamic effect of EPS block, drop tests have been made up to 35.6km/h impact speed. Drop test results are compared with static test results and no appreciable difference was found. To improve the EPS module property, making holes to the block is suggested and drop test are performed for the modified blocks. From the drop test results, design values are suggested.

  • PDF

Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns (철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정)

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • An equation for calculating confining reinforcement amount of RC bridge columns, specified in the current bridge design codes, has been made to provide additional load-carrying strength for concentrically loaded columns. The additional load-carrying strength will be equal to or slightly greater than the resistant strength of a column against axial load, which is lost because the cover concrete spalls off. The equation considers concrete compressive strength, yield strength of transverse reinforcement, and the section area ratio as major variables. Among those variables, the section area ratio between the gross section and the core section, varying by cover thickness, is a variable which considers the strength in the compression-controlled region. Therefore, the cross section ratio does not have a large effect in the aspect of ductile behavior of the tension-controlled region, which is governed by bending moment rather than axial force. However, the equation of the design codes for calculating confining reinforcement amount does not directly consider ductile behavior, which is an important factor for the seismic behavior of bridge columns. Consequently, if the size of section is relatively small or if the section area ratio becomes excessively large due to the cover thickness increased for durability, too large an amount of confining reinforcement will be required possibly deteriorating the constructability and economy. Against this backdrop, in this study, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement. An equation for calculating the amount of confining reinforcement was also modified for reasonable seismic design and the safety. In addition, appropriateness of the modified equation was examined based on the results of various test results performed at home and abroad.

Effect of Fabric Sound of Vapor Permeable Water Repellent Fabrics for Sportswear on Psychoacoustic Properties (스포츠웨어용 투습발수직물 소리가 심리음향학적 특성에 미치는 영향)

  • Lee, Jee-Hyun;Lee, Kyu-Lin;Jin, Eun-Jung;Yang, Yoon-Jung;Cho, Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 2012
  • The objectives of this study were to investigate the psychoacoustic properties of PTFE(Poly tetra Fluoroethylene) laminated vapor permeable water repellent fabrics which are frequently used for sportswear, to examine the relationship among fabrics' basic characteristics, mechanical properties and the psychoacoustic properties, and finally to propose the predicting model to minimize the psychoacoustic fabric sound. A total of 8 specimens' frictional sound were recorded and Zwicker's psychoacoustic parameters such as loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) were calculated using the Sound Quality Program. Mechanical properties of specimens were measured by KES-FB system. Loudness(Z) of specimen D-1 was the highest, which means the rustling sound of the specimen D-1 was the most noisy. Statistically significant difference among film type was observed only in loudness(Z) for fabric sound. Based on ANOVA and post-hoc test, specimens were classified into less loud PTFE film group (groupI) and loud PTFE film group (groupII). Loudness(Z) was higher when staple yarn was used compared when filament yarn was used. According to the correlation between the mechanical properties of fabrics and loudness(Z) in groupI, the shear properties, compression properties and weight showed positive correlation with loudness(Z). According to the regression equation predicting loudness(Z) of groupI, the layer variable was chosen. In groupII, variables explaining the loudness(Z) were yarn types and shear hysteresis(2HG5).

  • PDF

A Fundamental Study on Evaluation of Web Crippling Strength of Corroded H-Beams (부식 H형 강재의 복부좌굴강도 추정에 관한 기초적 연구)

  • Kim, In-Tae;Shin, Chang-Hee;Cheung, Ji-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.421-433
    • /
    • 2010
  • The most typical deterioration of steel structures is corrosion damage. However, a method to evaluate residual load-carrying capacity of corroded steel structures is not yet established. It is difficult to check current serviceability and safety of the structures. In this study, compressive tests and finite element analyses were conducted on H-beams with corroded web. Then, the effect of corrosion damage on web crippling strength and evaluation methods of the web crippling strength are studied. Based on the tests, 4 H-beam specimens used in a subway construction site and 9 H-beam specimens with different web-thickness and damaged-height underwent compression-tests. To consider loading and supporting areas in the site, compressive loading was applied in the entire region of the upper and bottom flange in 5 H-beam specimens and applied partially on the regions of the upper and bottom flange in 8 specimens. The finite element analysis of 38 parametric model specimens simulating different corrosion damages was also carried out. From experimental and analytical results, the relationships between corrosion damages in the web and residual web crippling strength are presented. Factors web crippling strength was reduced are formulated by using residual average thickness and the standard deviation of the corroded web thickness. Also, a simple evaluation method of residual web crippling strength was proposed.

An Experimental Study on Stress-Strain Behavior of Sands under Three Dimentional Stress (삼차원(三次元) 응력조건하(應力條件下)의 모래의 응력(應力)-변형거동(變形擧動)에 관한 실험적(實驗的) 연구(硏究))

  • Chung, Hyung Sik;Chun, Byung Sik;Lee, Hyoung Soo;Koh, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.153-166
    • /
    • 1991
  • In an attempt to investigate the effect of intermedate principal stresses which are related to the stress-strain behavior of standard sands, a series of three-Principal stress control tests were conducted for individual stress paths. The results have shown that shear strengths of sands vary with the stress paths. The variations in internal friction angle are accorded with the Habibs stress parameter, b which represents Stress paths, showing on abropt increase at the values between 0.0 and 0.268, a moderate level between 0.268 and 0.682, and a slight decrease between 0.682 and 1.0 However, the friction angles under a triaxial extention state, were found relatively larger than under a triaxial compression state. In general, such veriations were found to have the same tendency without any relevant relation with the density of specimens and confining pressures. Therefore, it is concluded, that the shear strength of sands are positively influeced by the intermediate principal stresses present in the media. And the influnce of intermediate principal stresses on shear strengths of sands found from the present study are well compared with the previous studies by Lade-Duncan and Matsuoka-Nakai revealing a similar tendency within the failure criteria proposed by them.

  • PDF

Mechanical Properties of Cement Grout Including Conductive Materials (전도성 재료를 포함한 시멘트 그라우트의 역학적 특성)

  • Choi, Hyojun;Cho, Wanjei;Hwang, Bumsik;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.12
    • /
    • pp.35-41
    • /
    • 2020
  • Recently, underground spaces have been developed variously due to the concentration of the building structure in downtown area and reconstruction of the apartment. However, various problems such as differential settlement are occurring in the waterproof and reinforcement construction. In grouting method, which is frequently used for the ground reinforcement, quality control was performed by measuring the injection quantity of grouting materials and performing laboratory tests using boring samples, but it is difficult to determine whether the ground reinforcement has been performed properly during the construction stage. In order to solve this problem, a research is needed to carry out quality control by measuring electric resistivity after grouting is performed using grouting materials mixed with conductive materials. In this research, as a basic study of the new grouting method using conductive materials, uniaxial compression tests were performed using cement specimen with 0, 3, 5, 7% of carbon fiber to evaluate the effect of conductive material on the performance of grouting material. Based on the test results, the uniaxial compressive strength is increased with the mixed proportion of the carbon fiber increase. Furthermore, the carbon fiber can also affect on the early-strength of the grouting materials.

A Study on the Undrained Deformation Characteristics of Remoulded Marine Clay (재성형(再成形)한 해성점토(海成粘土)의 비배수(非排水) 변형특성(變形特性)에 관(關)한 연구(硏究))

  • Yoon, Hyun Jung;Kang, Yea Mook;Cho, Seong Seup
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.309-323
    • /
    • 1985
  • The Paper describes the observed behaviour in the undrained triaxial condition of marine clays remoulded at various different levels of factors, to find out the effects of restricted factors on the stress-strain characteristics. The conventional triaxial compression tests $({\sigma}1>{\sigma}2={\sigma}3)$ were carried out on the 50mm in diameter and 100mm long cylindrical specimens of Gun-san bay mud under controlled various moisture content, density, axial strain rate and passing on No. 200 sieve. Significant conclusions from this study are; 1. The compressible deviator stress at failure of pure marine clay was observed to increase with the decrease of moulding moisture content. 2. The compressible deviator stress at failure increased with the increasing of moulding dry density. 3. The interaction between moisture content and density on the stress-strain characteristics of marine clay was remarkedly significant, as the result of factorial experimental method. 4. The effect of axial strain rate on stress-strain behaviour was unsignificant in marine clay and but the secant moduli could be pronounced on a slight decreasing with increase of the strain rate. 5. With the increasing of the passing on No. 200 sieve, the deviator stress increased regularly. 6. The multiple regression equation could be modeled for the prediction of stress or strain and the comparison with experimental results relatively proved the accuracy.

  • PDF

A New Study of Sensing and Optimum Preparation Conditions of Graphite/Different Paper Sensors for Composite Materials (복합재료용 흑연/종이 센서의 최적제조조건 및 감지능 평가 연구)

  • Park, Ha-Seung;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.51-56
    • /
    • 2018
  • A new study was carried out to utilize a pencil drawing paper sensor (PDPS), which drew a line using a pencil on the paper, as a sensor. The sensing effect on 3 different papers based on the properties of PDPS was compared. The specimens were prepared by drawing 4B pencils on plain (A4), Hwasun, and Han papers. The silver paste was used to give good electrical contacts of the copper wires and the pencil drawn line. The chemical structures of 3 papers for PDPS by FT-IR spectrum analysis were similar and the comparative compact states of each paper were observed by optical microscope. From statistical evaluation of tensile strength using 3 papers, plain paper was chosen to be best for the PDPD. The optimum drawing number of PDPD was determined by changing the thickness of the paper with the drawing number. Electrical resistance (ER) with graphite on 3 different papers were compared. The changes in compression was observed through cyclic compressive test of composite materials, it was possible to predict the degree of strain sensing under compressive test. It leads to expectation of properties.