• 제목/요약/키워드: Compressible air

검색결과 147건 처리시간 0.026초

Calibration of flush air data sensing systems for a satellite launch vehicle

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권1호
    • /
    • pp.1-15
    • /
    • 2022
  • This paper presents calibration of flush air data sensing systems during ascent period of a satellite launch vehicle. Aerodynamic results are numerically computed by solving three-dimensional time dependent compressible Euler equations over a payload shroud of a satellite launch vehicle. The flush air data system consists of four pressure ports flushed on a blunt-cone section of the payload shroud and connected to on board differential pressure transducers. The inverse algorithm uses calibration charts which are based on computed and measured data. A controlled random search method coupled with neural network technique is employed to estimate pitch and yaw angles from measured transient differential pressure history. The algorithm predicts the flow direction stepwise with the function of flight Mach numbers and can be termed as an online method. Flow direction of the launch vehicle is compared with the reconstructed trajectory data. The estimated values of the flow direction are in good agreement with them.

연료전지용 캐소드 공기블로어의 비정상 내부유동장 연구 (Unsteady Internal Flow Analysis of a Cathode Air Blower Used for Fuel Cell System)

  • 장춘만;이종성
    • 신재생에너지
    • /
    • 제8권3호
    • /
    • pp.6-13
    • /
    • 2012
  • This paper describes unsteady internal flow characteristics of a cathode air blower, used for the 1 kW fuel cell system. The cathode air blower considered in the present study is a diaphragm type blower. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is performed. Moving mesh system is applied to the numerical analysis for describing the volume change of the diaphragm cavity in time. Throughout a numerical simulation by modeling the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Variations of mass flow rate, force and pressure on the lower moving plate of a diaphragm cavity are evaluated in time. The computed mass flow rate at the same pressure and rotating frequency of a motor has a maximum of 5 percent error with the experimental data. It is found that flow pattern at the suction process is more complex compared to that at the discharge process. Unsteady nature of internal flow in the cathode air blower is analyzed in detail.

ALE Godunov 법을 이용한 1 차원 압축성 이상유동 해석 (Compressible Two-Phase Flow Computations Using One-Dimensional ALE Godunov Method)

  • 신상묵;김인철;김용직
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.330-340
    • /
    • 2005
  • Compressible two-phase flow is analyzed based on the arbitrary Lagrangian-Eulerian (ALE) formulation. For water, Tamman type stiffened equation of state is used. Numerical fluxes are calculated using the ALE two-phase Godunov scheme which assumes only that the speed of sound and pressure can be provided whenever density and internal energy are given. Effects of the approximations of a material interface speed are Investigated h method Is suggested to assign a rigid body boundary condition effectively To validate the developed code, several well-known problems are calculated and the results are compared with analytic or other numerical solutions including a single material Sod shock tube problem and a gas/water shock tube problem The code is applied to analyze the refraction and transmission of shock waves which are impacting on a water-gas interface from gas or water medium.

압축성 유체의 급속 가열에 기인한 압력파의 생성 및 전달특성에 관한 연구 (A Study on the Generation and Transmission of a Pressure Wave Induced by Rapid Heating of Compressible Fluid)

  • 황인주;김윤제
    • 에너지공학
    • /
    • 제12권1호
    • /
    • pp.29-34
    • /
    • 2003
  • 압력파의 일종인 열음향파는 압축성유체를 급속히 가열 또는 냉각하는 경계면 근처에서 유체가 순간적으로 압축 및 팽창하는 경우에 발생하는 현상으로 자연대류가 일어나지 않는 우주공간에서는 매우 중요한 열전달 메커니즘이다. 본 연구에서는 공기로 채워진 공간에서 급속한 가열에 의하여 발생한 열음향파의 전달특성을 수치적인 방법에 의하여 평가하고자 유한체적법을 기반으로 비정상 지배방정식을 이산화하였으며, PISO알고리즘과 2계 상향기법을 적용하여 해석을 수행하였다. 안정적인 수치해는 50 $\times$ 800 개의 셀과 1 $\times$ $10^{-9}$ 시간간격을 적용하여 얻을 수 있었으며, 생성된 열음향파는 유체 속을 통과하면서 점성과 열소산에 의하여 점점 감쇠하여 가는 경향을 보였다. 생성된 압력파는 날카로운 전단과 점점 감소하여 길게 늘어지는 후단부를 갖는 형상을 보였다.

예조건화기법을 이용한 유동장 및 반응유동장의 계산 (Computation of Non-reacting and Reacting Flow-Fields Using a Preconditioning Method)

  • 고현;윤웅섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.189-194
    • /
    • 2001
  • In this paper, non-reacting and reacting flowfields were computed using a preconditioned Navier-Stokes solver. The preconditioning technique of Merkle et al. and TVD scheme or Chakravarthy and Osher was employed and the results obtained using developed code have a good agreement with the previous results and experimental data. The preconditioned Wavier-Stokes equation set with low Reynolds number $\kappa-\epsilon$ equation and species continuity equations, are discretized with strongly implicit manner and time integrated with LU-SSOR scheme. For the purpose of treating unsteady problem the duel-time stepping scheme was employed. For the validation of the code in incompressible flow regime, steady driven square cavity flow was considered and calculation result shows reasonably good agreement with the result of incompressible code. Shock wave/boundary layer interaction problem was considered to show the shock capturing performance of preconditioned-TVD scheme. To validate unsteady flow, acoustic oscillation problem was calculated, and supersonic premix flame of $H_2$-air reaction problem which is calculated with turbulence model, 9-species/18-reaction step reaction model, shows reasonable agreement with the previous results. As a result, the preconditioning method has an advantage to calculate incompressible and compressible flow through one code and preconditioned solver easily developed from standard compressible code with minor efforts. But additional computational time and computer memory is required due to preconditioning matrix.

  • PDF

보텍스 튜브를 이용한 비압축성 유체의 에너지 분리 (Energy Separation of Incompressible Fluid Using Vortex Tube)

  • 유갑종;최병철;이병화
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.108-116
    • /
    • 2001
  • The vortex tube is a simple device which separates fluid stream into a cold stream and a hot stream without any chemical reaction. The process of energy separation in the vortex tube has caused a great deal of interest. Although many studies on energy separation in the vortex tube using air as the working fluid have been made so far, few experimental studies treated energy separation for incompressible fluid. So, an experimental study for the energy separation in the vortex tube using the water which is essentially an incompressible fluid is presented. When working fluid is the water, the best geometric values of nozzle area ratio and number of nozzle holes are 0.155, 6 respectively. These geometric values are showed by the similar values which are presented by compressible fluid as working fluid. But hot side mass fraction of which maximum temperature drop is happened are different from compressible fluid.

임계 오리피스를 통과한 입자의 운동특성과 입자 빔에 관한 수치적 연구 (Numerical Study of Particle Motion and Particle Beam Formation Through a Critical Orifice)

  • 안진홍;안강호
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1240-1247
    • /
    • 1999
  • Particle motion through a disk type critical orifice placed in a 3.0cm diameter chamber has been studied numerically. In the simulation, the velocity field is solved using Pantankar's SIMPLER algorithm for the compressible flow and convergence of the computation is confirmed if the mass source at each control volume is smaller than $10^{-7}$. The particle motion in the flow field is solved in Lagrangian method. The particle trajectories showed that the particles injected away from the center line are expanded rapidly. At lower pressures, this expansion phenomena are more dominant. At lower pressures, the clear difference in particle and air speed is showed all the way down to the exit plan. It was found that particles with Stokes number of ca.2.5 tend to focus close to the center line very well except the particles travelling near the wall. However, particles with Stokes number greater than ca.2.5 show a tendency to cross the center line.

다공벽을 전파하는 압축파에 관한 수치해석적 연구 (Numerical Study of Compression Waves Propagating Through Porous Walls)

  • 김희동
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1403-1412
    • /
    • 1997
  • When a high-speed railway train enters a tunnel, a compression wave is generated ahead of the train and propagates through the tunnel, compressing and accelerating the rest air in front of the wave. At the exit of the tunnel, an impulsive wave is emitted outward toward the surrounding, which causes a positive impulsive noise like a kind of sonic boom produced by a supersonic aircraft. With the advent of high-speed train, such an impulsive noise can be large enough to cause the noise problem, unless some attempts are made to alleviate its pressure levels. In the purpose of the impulsive noise reduction, the present study calculated the effect of porous walls on the compression wave propagating into a model tunnel. Two-dimensional unsteady compressible equations were differenced by using a Piecewise Linear Method. Calculation results show that the cavity/porous wall system is very effective for a compression wave with a large nonlinear effect. The porosity of 30% is most effective for the reduction of the maximum pressure gradient of the compression wave front. The present calculation results are in a good agreement with experimental ones obtained previously.

Film-Cooling Hole의 유출계수에 관한 수치해석적 연구 (A Computational Study for the Discharge Coefficient of a Film-Cooling Hole)

  • 김재형;김희동;박경암
    • 한국추진공학회지
    • /
    • 제7권2호
    • /
    • pp.15-22
    • /
    • 2003
  • 본 연구에서는 2차원 압축성 Navier-Stokes 방정식을 사용하여 $30^{\cire}$ 경사진 터빈익의 냉각구를 통한 유출계수를 예측하였다. 내/외부 유동이 유출계수에 미치는 영향을 알아보기 위하여 외부유동만 존재하는 경우, 내부유동만 존재하는 경우 그리고 내/외부 유동이 없는 3가지 경우에 대하여 수치해석을 수행하였으며. 실험결과와 비교하였다. 본 연구의 수치해석결과는 유출계수를 잘 예측하였으며, 외부유동은 유출계수를 감소시키고, 내부유동은 냉각구내에서의 전압손실과 경계층의 영향을 감소시켜 특정 구간에서 유출계수를 증가시킨다는 것을 알았다.

Time-Dependent Characteristics of the Nonequilibrium Condensation in Subsonic Flows

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Toshiaki Setoguchi;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1511-1521
    • /
    • 2002
  • High-speed moist air or steam flow has long been of important subject in engineering and industrial applications. Of many complicated gas dynamics problems involved in moist air flows, the most challenging task is to understand the nonequilibrium condensation phenomenon when the moist air rapidly expands through a flow device. Many theoretical and experimental studies using supersonic wind tunnels have devoted to the understanding of the nonequilibrium condensation flow physics so far. However, the nonequilibrium condensation can be also generated in the subsonic flows induced by the unsteady expansion waves in shock tube. The major flow physics of the nonequilibrium condensation in this application may be different from those obtained in the supersonic wind tunnels. In the current study, the nonequilibrium condensation phenomenon caused by the unsteady expansion waves in a shock tube is analyzed by using the two-dimensional, unsteady, Navier-Stokes equations, which are fully coupled with a droplet growth equation. The third-order TVD MUSCL scheme is applied to solve the governing equation systems. The computational results are compared with the previous experimental data. The time-dependent behavior of nonequilibrium condensation of moist air in shock tube is investigated in details. The results show that the major characteristics of the nonequilibrium condensation phenomenon in shock tube are very different from those in the supersonic wind tunnels.