• 제목/요약/키워드: Compressed air cooling

검색결과 55건 처리시간 0.023초

대체냉각 기술을 이용한 환경친화 연삭가공 기술 (A Study on the Grinding Characteristics According to Cooling Methods)

  • 이석우;최헌종;허남환;이종항
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.962-967
    • /
    • 2003
  • Recently, environmental pollution has become a serious problem in industry, and many researches have been done in order to preserve the environment. The coolant, which promotes lubrication, cooling and penetration, contains chlorine, sulfur and phosphorus to improve the machining efficiency. These additives, which move around into the air during machining, pollute working. Therefore, many researches on how to reduce the amount of coolant during machining have been carried out. However, to reduce even small amount of coolant causes high temperature of a workpiece and it brings thermal defects. In this study, the experiments of wet & dry grinding using cooling methods (using coolant only, mist and compressed cold air only) are performed to solve the problem of environmental contamination and to get a better surface integrity of a workpiece by comparing surface roughness, roundness and residual stress.

  • PDF

연삭 가공시 Mist의 냉각효과에 관한 연구 (A Study on the Cooling Effects of Mist in the Grinding)

  • 이석우;최헌종;김대중
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.918-921
    • /
    • 2001
  • In grinding process, the heat of $1200^{\circ}$~$1500^{\circ}$ on the grinding area between grinding wheel and workpiece is generated. It decreases the surface integrity of workpiece and causes the thermal damages such as the deformed layer, residual stress and grinding burn. Generally coolant is widely used for preventing the heat generation on the grinding area, but it deteriorates the working condition by polluting the atmosphere of workplace and in the end pollutes the environment. The grinding methods using the compressed cold air and mist are the cooling methods to substitute conventional coolant. They can decrease the environmental pollution through not using coolant any more or minimizing it. In this study, the cooling effects of grinding methods using the compressed cold air and mist have been investigated. The grinding system equipped with the water bathe and mist spray nozzle was developed. The energy partition to workpiece through measuring the temperature on the workpiece surface was calculated. The surface integrity of workpiece and thermal damage like the deformed layer were analyzed.

  • PDF

WA 숫돌을 이용한 원통 연삭 시 압축냉각공기와 연삭유의 냉각효과에 관한 연구 (A Comparison of the Cooling Effects for the Compressed Cold Air and Coolant on the Cylindrical Grinding with WA Wheel)

  • 이석우;최헌종;정해도
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.155-161
    • /
    • 2000
  • Recently, environmental pollution has become a big problem in industry and many researches have been done in order to preserve the environment. In the grinding process, the coolant has great influence on environment. It contains several chemicals(sulfur, phosphorus and chlorine) to improve the grinding efficiency. If these additives go into the workplace atmosphere, it is harmful for workers. It can also cause the environment pollution. Because of these reasons many studies have been done to minimize the amount of coolant. However the small amount of coolant can cause the thermal defect on the ground surface layer. This study forced the effects of the compressed cold air when the spindle shaft materials(SCM4 & SCM21) were cylindrical ground with WA wheel. The compressed cold air was used as the coolant and grinding performance was compared with that of the conventional grinding fluids(emulsion). Many experiments were carried out with these two cooling materials. The surface roughness, residual stress, and roundness were measured for the cylindrical grinding. The test results showed that the compressed cold air was very useful as the cooling materials for grinding process. It was also efficient to minimize the thermal defects of workpiece and could also play a role in solving environmental pollution.

  • PDF

압축냉각공기를 이용한 공구수명 향상에 관한 연구 (The study on improving tool life using compressed chilly air)

  • 김찬우;이채문;이득우;김정석;정우섭
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.510-515
    • /
    • 2003
  • High-speed machining generates concentrated Thermal/fractional damage at the cutting edge and rapidly decreases the tool life. This paper is aimed at improving the tool life using compressed chilly air. In this paper, the experiments were carried out in various cutting environments, such as dry, wet and compressed chilly air. Tool life were measured to evaluate machinability in high-speed milling of various materials. With respect to the cutting environment, compressed chilly air increased tool life. However, the wet condition decreased tool life due to the thermal shock caused by excessive cooling.

  • PDF

난삭성 재료의 가공환경변화에 따른 고속가공 특성 평가(압축공기냉각에 의한 공구수명 평가) (Evaluation of Machinability by Cutting Environments in High-Speed Machining of Difficult-to-cut Materials(Test for Tool Life Using Compressed Chilly Air Cooling))

  • 김석원;안철수;이득우
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.158-163
    • /
    • 2000
  • High speed machining of difficult-to-cut materials generates the concentrated thermal/frictional damage at the cutting edge of the tool and rapidly decreases the tool life. In this paper, the cutting environments, such as dry, fluid coolant, and compressed chilly air coolant, were investigated to improve the tool life. For this study, the compressed chilly air system was manufactured. The experiments were performed for various difficult-to-cut materials and various coated tools. The effectiveness of the developed methods on the basis of tool life was estimated. The results show that the cutting environment using compressed chilly air coolant provided better tool life than using the fluid coolant or using the dry.

  • PDF

소구경 미세홈 고속가공시 가공환경변화에 따른 가공성 평가 (Evaluation of Machinability of Micro groove by Cutting Environments in High Speed Machining using Ball End Mill)

  • 정연행;이태문;강명창;이득우;김정석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.32-37
    • /
    • 2002
  • High speed machining is one of most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when the high speed machining of materials, especially in machining of micro groove, a severely thermal demage was generated on workpiece and tool. Generally, the cutting fluid is used to improve penetration, lubrication, and cooling effect. In order to rise the performance of lubrication, it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive Therefore, the compressed chilly air with Oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HRC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effectiveness of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool life of carbide tool coated TiAIN with compressed chilly air mist cooling was much longer than with dry and flood coolant when cutting the material.

  • PDF

미세홈 고속가공시 절삭유제 공급방식에 따른 가공성 평가 (Cutting Characteristics of Micro grooving by Cutting Environments in High Speed Machining using Ball End Mill)

  • 배정철;정연행;강명창;이득우;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.172-175
    • /
    • 2002
  • High speed machining is one of the most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when machining of micro groove in high speed machining a severely thermal damage was generated on workpiece and cutting tool. Generally, the cutting fluid is used to improve penetration. lubrication. and cooling effect. In order to rise the performance of lubrication. it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive. Therefore, the compressed chilly air with oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HrC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effect of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool lift of carbide tool coated TiAlN with compressed chilly air mist cooling was much longer than that of the dry and flood coolant when cutting the material.

  • PDF

건식 저온 압축 공기를 이용한 절삭유 대체형 가공 공정 방식에 관한 연구 (A Study on the Environment Conscious Machining Process Using Compressed Dry Cooling Air)

  • 강재훈;송준엽;박종권;노승국
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.129-132
    • /
    • 2003
  • Used cutting fluid from machining processes is harmful to both environment and human health. Chemical substances that provide the lubrication function in the machining process are toxtc to the environment if the cutting fluid is released to soil and water and caused serious health problems to workers who are exposed to the cutting fluid in both liquid and mist form. Recently. cost of using cutting fluid is increasing as the number and the extensiveness of environmental protection laws and regulations increase. Therefore, the use of cutting fluid in machining processes place an enormous burden on manufacturing companies to cover the additional costs associated with their use and protection of our environment. Current trends in manufacturing are focused on minimizing or eliminating the use of metalworking fluids in machining processes. And the increased costs for the disposal of waste products (swarf, coolants and lubricants), especially in industrially developed countries, has generated interest in dry machining. A variety of new techniques are testimony that new technology has rationalized further efforts to research and implement dry machining processes. This paper presents the developed equipment, the process optimization and the applications in the field of surface grinding for the new cryogenic dry machining using a compressed cooling air. The investigated new machining process method shows many advantages compared to conventional techniques with cutting fluid.

  • PDF

항공기소재(고크롬강)의 환경친화적 가공기술 (Environmentally Conscious Machining Technology of Aircraft Material(12Cr steel))

  • 강명창;김정석;이득우;황윤호;송준호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.1051-1054
    • /
    • 2002
  • Environmentally conscious machining and technology have been taking more and more important position in machining process. Since cutting fluid has some impact on environment, many researches are being carried out to minimize the use of cutting fluid. It can be Increased the environmental pollution through not using coolant any more or minimizing it. In this study, the cooling effects of cutting methods using the compressed cold air, dry cutting and cutting fluid will investigate in the blade machining. In order to examine the characteristics of cutting and tool in the environmentally conscious machining, this work investigates experimentally the degree of tool wear, cutting force and characteristics of surface roughness in relation to machining conditions and cooling methods.

  • PDF