• 제목/요약/키워드: Comprehensive Environmental Response

검색결과 107건 처리시간 0.023초

환경보건종합계획을 통해 살펴본 환경보건정책: 지난 10년과 향후 10년 (Environmental Health Policies for the Past and Coming Decade in South Korea)

  • 이종태
    • 한국환경보건학회지
    • /
    • 제47권5호
    • /
    • pp.379-383
    • /
    • 2021
  • This paper discussed environmental health policies for the past and coming decade by reviewing the First Comprehensive Environmental Health Plan (2011~2020) and introducing the Second Comprehensive Environmental Health Plan (2021~2030). The major achievement of the First Comprehensive Environmental Health Plan was the establishment of receptor-oriented environmental health policies. However, the main limitations were insufficient policy support for relief and/or recovery from environmental pollution damage and low public awareness of environmental health policies. The Second Comprehensive Environmental Health Plan presents the following major policy tasks: establish an omnidirectional environment health investigation and monitoring system, provide customized environmental health services, improve the environmental health damage relief and recovery system, and promote regional environmental health policies. The Second Plan has a clear distinction from the First Plan in that it expands the field of environmental health from the prevention and management of environmental risk factors to proactive damage response and recovery, which will effectively contribute to alleviating the burden of environmental disease.

Effects of strong ground motions of near source earthquakes on response of thin-walled L-shaped steel bridge piers

  • Xie, Guanmo;Taniguchi, Takeo;Chouw, Nawawi
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.341-346
    • /
    • 2001
  • Near source earthquakes can be characterized not only by strong horizontal but also by strong vertical ground motions with broad range of dominant frequencies. The inelastic horizontal response of thin-walled L-shaped steel bridge piers, which are popularly used as highway bridge supports, subjected to simultaneous horizontal and vertical ground excitations of near source earthquakes is investigated. A comprehensive damage index and an evolutionary-degrading hysteretic model are applied. Numerical analysis reveals that the strong vertical excitation of a near source earthquake exerts considerable influences on the damage development and horizontal response of thin-walled L-shaped steel bridge piers.

금융기관의 환경책임과 대응방안에 대한 법적 고찰 (A Legal Study on the Environmental Liability of Financial Institutions and its Responses)

  • 이재협
    • 환경정책연구
    • /
    • 제3권1호
    • /
    • pp.1-29
    • /
    • 2004
  • The role of the financial institution to promote corporate sustainability may be reviewed in two angles, as a commercial lender and an investor. As a commercial lender, financial institutions should minimize the legal risks and the political risks. Financial institutions began to recognize environmental risks as legal risks that directly affect their lending practices since the legislation of the Comprehensive Environmental Response, Compensation, and Liability Act("Superfund") of the U.S.A. The so-called lender liability rule has a detailed guideline where the financial institutions may be exempted from the Superfund Liability. Similar attempts are noticed in the recent EU White Paper on Environmental Liability. In Korea, comprehensive environmental liability laws are yet to be developed. The Soil Environment Preservation Act now includes a far-reaching environmental liability provisions, where the owners and operators as well as receivers of the facility bear responsibility. However, whether the financial institutions may be captured as a potential responsible party is not very clear. Until the relevant legislation is developed and court decisions accumulate, Korean financial institutions are well advised to raise awareness on this issue, to develop environmental policies and to train personnels.

  • PDF

미세먼지 농도 개선을 위한 배출량 저감대책 효과 분석 (Evaluation of the Effectiveness of Emission Control Measures to Improve PM2.5 Concentration in South Korea)

  • 김은혜;배창한;유철;김병욱;김현철;김순태
    • 한국대기환경학회지
    • /
    • 제34권3호
    • /
    • pp.469-485
    • /
    • 2018
  • On September 26, 2017, South Korean government has established the Particulate Matter Comprehensive Plan to improve Korean air quality by 2022, which aims to reduce annual mean surface $PM_{2.5}$ concentration to $18{\mu}g/m^3$. This study demonstrates quantitative assessment of predicted $PM_{2.5}$ concentrations over 17 South Korean regions with the enforcement of the comprehensive plan. We utilize the Community Multi-scale Air Quality (CMAQ) modeling system with CAPSS 2013 and CREATE 2015 emissions inventories. Simulations are conducted for 2015 with the base emissions and the planned emissions, and impacts from model biases are minimized using the RRF (Relative Response Factor). With effective emission reduction scenario suggested by the comprehensive plan, the model demonstrates that the surface $PM_{2.5}$ concentration may decrease by $6{\mu}g/m^3$ ($23{\mu}g/m^3{\rightarrow}17{\mu}g/m^3$) and $7{\mu}g/m^3$ ($25{\mu}g/m^3{\rightarrow}18{\mu}g/m^3$) for Seoul and South Korea, respectively. The number of high $PM_{2.5}$ days(daily mean>$25{\mu}g/m^3$) also decreases from 21 days to 4 days.

Optimization of HPLC-tandem mass spectrometry for chlortetracycline using response surface analysis

  • Bae, Hyokwan;Jung, Hee-Suk;Jung, Jin-Young
    • Environmental Engineering Research
    • /
    • 제23권3호
    • /
    • pp.309-315
    • /
    • 2018
  • Chlortetracycline (CTC) is one of the most important compounds in antibiotic production, and its distribution has been widely investigated due to health and ecological concerns. This study presents systematic approach to optimize the high-performance liquid chromatography-tandem mass spectrometry for analyzing CTC in a multiple reaction monitoring mode ($479{\rightarrow}462m/z$). One-factor-at-a-time (OFAT) test with response surface analysis (RSA) was used as optimization strategy. In OFAT tests, the fragmentor voltage, collision energy, and ratio of acetonitrile in the mobile phase were selected as major factors for RSA. The experimental conditions were determined using a composite in cube design (CCD) to maximize the peak area. As a result, the partial cubic model precisely predicted the peak area response with high statistical significance. In the model, the (solvent composition) and (collision $energy^2$) terms were statistically significant at the 0.1 ${\alpha}$-level, while the two-way interactions of the independent variables were negligible. By analyzing the model equation, the optimum conditions were derived as 114.9 V, 15.7 eV, and 70.9% for the fragmentor voltage, collision energy, and solvent composition, respectively. The RSA, coupled with the CCD, offered a comprehensive understanding of the peak area that responds to changes in experimental conditions.

The "Warm Zone" Cases: Environmental Monitoring Immediately Outside the Fire Incident Response Arena by Firefighters

  • Caban-Martinez, Alberto J.;Kropa, Bob;Niemczyk, Neal;Moore, Kevin J.;Baum, Jeramy;Solle, Natasha Schaefer;Sterling, David A.;Kobetz, Erin N.
    • Safety and Health at Work
    • /
    • 제9권3호
    • /
    • pp.352-355
    • /
    • 2018
  • Hazardous work zones (i.e., hot, warm, and cold) are typically established by emergency response teams during hazardous materials (HAZMAT) calls but less consistently for fire responses to segment personnel and response activities in the immediate geographic area around the fire. Despite national guidelines, studies have documented the inconsistent use of respiratory protective equipment by firefighters at the fire scene. In this case-series report, we describe warm zone gas levels using multigas detectors across five independent fire incident responses all occurring in a large South Florida fire department. Multigas detector data collected at each fire response indicate the presence of sustained levels of volatile organic compounds in the "warm zone" of each fire event. These cases suggest that firefighters should not only implement strategies for multigas detector use within the warm zone but also include respiratory protection to provide adequate safety from toxic exposures in the warm zone.

Aerostatic and buffeting response characteristics of catwalk in a long-span suspension bridge

  • Li, Yongle;Wang, Dongxu;Wu, Chupeng;Chen, Xinzhong
    • Wind and Structures
    • /
    • 제19권6호
    • /
    • pp.665-686
    • /
    • 2014
  • This study presents a comprehensive investigation of the aerostatic and buffeting response characteristics of a suspension bridge catwalk. The three-dimensional aerostatic response analysis was carried out taking into account the geometric nonlinearity and nonlinear dependence of wind loads on the angle of attack. The buffeting response analysis was performed in the time domain. The aerostatic and buffeting responses of the catwalk show strong coupling of vertical and lateral vibrations. The lateral displacement is the main component of the wind-induced static and buffeting response of the catwalk.

Numerical investigation on behaviour of cylindrical steel tanks during mining tremors and moderate earthquakes

  • Burkacki, Daniel;Wojcik, Michal;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.97-111
    • /
    • 2020
  • Cylindrical steel tanks are important components of industrial facilities. Their safety becomes a crucial issue since any failure may cause catastrophic consequences. The aim of the paper is to show the results of comprehensive FEM numerical investigation focused on the response of cylindrical steel tanks under mining tremors and moderate earthquakes. The effects of different levels of liquid filling, the influence of non-uniform seismic excitation as well as the aspects of diagnosis of structural damage have been investigated. The results of the modal analysis indicate that the level of liquid filling is really essential in the structural analysis leading to considerable changes in the shapes of vibration modes with a substantial reduction in the natural frequencies when the level of liquid increases. The results of seismic and paraseismic analysis indicate that the filling the tank with liquid leads to the substantial increase in the structural response underground motions. It has also been observed that the peak structural response values under mining tremors and moderate earthquakes can be comparable to each other. Moreover, the consideration of spatial effects related to seismic wave propagation leads to a considerable decrease in the structural response under non-uniform seismic excitation. Finally, the analysis of damage diagnosis in steel tanks shows that different types of damage may induce changes in the free vibration modes and values of natural frequencies.

Seismic response simulations of bridges considering shear-flexural interaction of columns

  • Zhang, Jian;Xu, Shi-Yu
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.545-566
    • /
    • 2009
  • Bridge columns are subjected to combined actions of axial force, shear force and bending moment during earthquakes, caused by spatially-complex earthquake motions, features of structural configurations and the interaction between input and response characteristics. Combined actions can have significant effects on the force and deformation capacity of RC columns, resulting in unexpected large deformations and extensive damage that in turn influences the performance of bridges as vital components of transportation systems. This paper evaluates the seismic response of three prototype reinforced concrete bridges using comprehensive numerical models that are capable of simulating the complex soil-structural interaction effects and nonlinear behavior of columns. An analytical approach that can capture the shear-flexural interacting behavior is developed to model the realistic nonlinear behavior of RC columns, including the pinching behavior, strength deterioration and stiffness softening due to combined actions of shear force, axial force and bending moment. Seismic response analyses were conducted on the prototype bridges under suites of ground motions. Response quantities of bridges (e.g., drift, acceleration, section force and section moment etc.) are compared and evaluated to identify the effects of vertical motion, structural characteristics and the shear-flexural interaction on seismic demand of bridges.

Structural response of corroded RC beams: a comprehensive damage approach

  • Finozzi, Irene Barbara Nina;Berto, Luisa;Saetta, Anna
    • Computers and Concrete
    • /
    • 제15권3호
    • /
    • pp.411-436
    • /
    • 2015
  • In this work, a comprehensive approach to model the structural behaviour of Reinforced Concrete (RC) beams subjected to reinforcement corrosion is proposed. The coupled environmental - mechanical damage model developed by some of the authors is enhanced for considering the main effects of corrosion on concrete, on composite interaction between reinforcement bars and concrete and on steel reinforcement. This approach is adopted for reproducing a set of experimental tests on RC beams with different corrosion degrees. After the simulation of the sound beams, the main parameters involved in the relationships characterizing the effects of corrosion are calibrated and tested, referring to one degraded beam. Then, in order to validate the proposed approach and to assess its ability to predict the structural response of deteriorated elements, several corroded beams are analyzed. The numerical results show a good agreement with the experimental ones: in particular, the proposed model properly predicts the structural response in terms of both failure mode and load-deflection curves, with increasing corrosion level.