• Title/Summary/Keyword: Compound generator

Search Result 19, Processing Time 0.026 seconds

Development of RVE Reconstruction Algorithm for SMC Multiscale Modeling (SMC 복합재료 멀티스케일 모델링을 위한 RVE 재구성 알고리즘 개발)

  • Lim, Hyoung Jun;Choi, Ho-Il;Yoon, Sang Jae;Lim, Sang Won;Choi, Chi Hoon;Yun, Gun Jin
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.70-75
    • /
    • 2021
  • This paper presents a novel algorithm to reconstruct meso-scale representative volume elements (RVE), referring to experimentally observed features of Sheet Molding Compound (SMC) composites. Predicting anisotropic mechanical properties of SMC composites is challenging in the multiscale virtual test using finite element (FE) models. To this end, an SMC RVE modeler consisting of a series of image processing techniques, the novel reconstruction algorithm, and a FE mesh generator for the SMC composites are developed. First, micro-CT image processing is conducted to estimate probabilistic distributions of two critical features, such as fiber chip orientation and distribution that are highly related to mechanical performance. Second, a reconstruction algorithm for 3D fiber chip packing is developed in consideration of the overlapping effect between fiber chips. Third, the macro-scale behavior of the SMC is predicted by the multiscale analysis.

The Study on the Image Quality and Patient Exposure Dose of Chest Radiography in Korea (흉부촬영시 피폭선량과 화질에 관한 조사연구)

  • Lee, Sun-Sook;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.18 no.2
    • /
    • pp.49-59
    • /
    • 1995
  • Recently, general radiography became to variety because of the continuous development of Inverter type generator and ortho chromatic system. Therefore, we must re-evaluate about patient exposure dose and image quality. I studied about chest radiography which has frequency among general radiography being used during FEB. to AUG., 1994 over 151 medical facilities from medical facilities that are located in Seoul area. The result obtained were as follows ; 1) The rectification method of the generator were employing mainly single phase full wave in 82.8 %, three phase full wave in 11.26 % and Inverter type in 4.64 % and condenser type is 1.32 %. 2) Exposure kV was used below 80 kV in most medical facilities and 21.8 % of the medical facilities was using high tube voltage higher than 120 kV. 3) The exposure time was used below the 0.05 sec in 28.4 %, in 29.8 % of the medical facilities used above 0.1 sec. 4) The usage frequency of the added filter is 15.3 %, and among them compound filter was used only 4 %. 5) Rare earth screen was used in 37.7 %. 6) The average skin entrance dose was 0.25 mSv, the range of dose is $0.05{\sim}0.79\;mSv$ in each medical facilities. 7) The average density of the lung field is 1.76, 0.49 in lung side, 0.30 in mediastinum and 0.37 in heart shadow. Therefore it is required to improve all of these for increasing image quality and reducing patient exposure dose as soon as possible.

  • PDF

Preparation of Calcium Peroxide Originated from Oyster Shell Powder and Oxygen Releasing Ability (패각 분말기반 과산화칼슘 제조와 산소 유리 특성)

  • Yoo, Gilsun;An, Jieun;Cho, Daechul;Kwon, Sung Hyun
    • Journal of Environmental Science International
    • /
    • v.27 no.9
    • /
    • pp.763-770
    • /
    • 2018
  • Bioremediation in situ is heavily dependent on the oxygenic environment which would privide the dwelling microorganism with sufficient oxygen. The situation could be easily resolved with supply of an Oxygen Releasing Compound (ORC). In this paper we prepared that sort of material out of oyster shell powder (mostly calcium carbonate) that prevails every shore areas of the country. We used two different oxidizing methods in the first step of the whole manufacturing process-conventional heating in a furnace and an ultrasound generator to obtain calcium oxide. Then that calcium oxide was further oxidized into calcium peroxide which may release oxygen under a moisturized condition. The oxygen releasing experiments were run to test the performance of our products, and to determine the gas kinetics during the experiments. Interestingly, calcium peroxide derived from ultrasound treatment was much more energy-effective as ORC than that from furnace heating although the heat derived process was better than that of ultrasound in terms of oxygen content and its releasing rate. We also found that most of the data collected from the gas releasing experiments fairly supported an ordinary $1^{st}$ order kinetics to oxygen concentration, which shaped a sharp discharge of oxygen at the very early moment of each test.

A Study on Processing Shape and Overcutting of Invar Sheet by Pulse Electrochemical Machining (펄스전해가공을 이용한 인바 박판의 가공 형상 및 Overcutting 현상에 관한 연구)

  • Yang, Bu-Yeol;Kim, Seong-Hyun;Choi, Seung-Geon;Choi, Woong-Hirl;Chun, Kwang-Ho;Lee, Eun-Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.314-319
    • /
    • 2015
  • Invar is a compound metal of Fe-Ni system contained 36.5% Ni. The characteristic of invar is that the coefficient of thermal expansion is $1.0{\times}10^{-6}cm/^{\circ}C$. It is approximately 10 times smaller than series of steel. Because of this low thermal expansion characteristic of Invar, it is used to shadow mask of display device such as UHDTV or OLED TV. In this study, pulse current from pulse generator instead of DC current is used to overcome the disadvantages of the conventional electrochemical machining. Pulsed current with different duty factor in PECM affect the precise geometry. Pulse electrochemical machining is conducted to machine the micro hole to the invar sheet with different duty factor. The machined shape and overcut of invar sheet with different duty factor is observed by optical microscope and scanning electron microscope (SEM).

A Novel Modulation Scheme and a DC-Link Voltage Balancing Control Strategy for T-Type H-Bridge Cascaded Multilevel Converters

  • Wang, Yue;Hu, Yaowei;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2099-2108
    • /
    • 2016
  • The cascaded multilevel converter is widely adopted to medium/high voltage and high power electronic applications due to the small harmonic components of the output voltage and the facilitation of modularity. In this paper, the operation principle of a T-type H-bridge topology is investigated in detail, and a carrier phase shifted pulse width modulation (CPS-PWM) based control method is proposed for this topology. Taking a virtual five-level waveform achieved by a unipolar double frequency CPS-PWM as the output object, PWM signals of the T-type H-bridge can be obtained by reverse derivation according to its switching modes. In addition, a control method for the T-type H-bridge based cascaded multilevel converter is introduced. Then a single-phase T-type H-bridge cascaded multilevel static var generator (SVG) prototype is built, and a repetitive controller based compound current control strategy is designed with the DC-link voltage balancing control scheme analyzed. Finally, simulation and experimental results validate the correctness and feasibility of the proposed modulation method and control strategy for T-type H-bridge based cascaded multilevel converters.

γ-ray Radiation Induced Synthesis and Characterization of α-Cobalt Hydroxide Nanoparticles

  • Kim, Sang-Wook;Kwon, Bob-Jin;Park, Jeong-Hoon;Hur, Min-Goo;Yang, Seung-Dae;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.910-914
    • /
    • 2010
  • A novel synthetic route has been developed to prepare $\alpha$-cobalt hydroxide with intercalated nitrate anions. It was successfully synthesized by $\gamma$-ray irradiation under simple conditions, i.e., air atmosphere, without base. Under $\gamma$-ray irradiation, it leads to the formation of layered cobalt hydroxynitrate compounds which have small crystalline size and have the role of a generator of hydroxyl anion. Structural and morphological characterizations were performed by using power X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). The component and thermal stability of the sample were respectively measured by Fourier transform infrared (FT-IR) spectroscopy, elemental analysis, and thermal analyses, including thermogravimetry (TG) and differential thermal analysis (DTA).

Separation of chlorine in a uranium compound by pyrohydrolysis and steam distillation, and its determination by ion chromatography (열가수분해 및 수증기증류에 의한 우라늄 화합물 중 염소 분리 및 이온크로마토그래피 정량)

  • Kim, Jung-Suk;Lee, Chang-Hun;Park, Soon-Dal;Han, Sun-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.45-53
    • /
    • 2010
  • For the determination of chlorine in uranium compound, analytical methods by using a steam distillation and a pyrohydrolysis have been developed. The steam distillation apparatus was composed of steam generator, distilling flask and condenser etc. The samples were prepared with an aliquot of LiCl standard solution and a simulated spent nuclear fuel. A sample aliquot was mixed with a solution containing 0.2 M ferrous ammonium sulfate-0.5 M sulfamic acid 3 mL, phosphoric acid 6 mL and sulfuric acid 15 mL. The chloride was then distilled by steam at the temperature of $140^{\circ}C$ until a volume of $90{\pm}5\;mL$ is collected. The pyrohydrolysis equipment was composed of air introduction system, water supply, quartz reaction tube, combustion tube furnace, combustion boat and absorption vessel. The chloride was separated from powdered sample which is added with $U_3O_8$ accelerator, by pyrohydrolysis at the temperature of $950^{\circ}C$ for 1 hour in a quartz tube with a stream of air of 1 mL/min supplied from the water reservoir at $80^{\circ}C$. The chlorides collected in each absorption solution by two methods was diluted to 100 mL and measured with ion chromatography to determine the recovery yield. For the ion chromatographic determination of chlorine in molten salt retained in a metal ingot, the chlorine was separated by means of pyrohydrolysis after air and dry oxidation, and grinding for the sample.

Improvement of the performance and emission in a four-stroke diesel engine using fuel additive (4행정 디젤엔진에 연료첨가제 사용에 따른 성능 및 배기배출물 개선에 관한 연구)

  • Ryu, Younghyun;Lee, Youngseo;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.762-767
    • /
    • 2016
  • High thermal efficiency and the ability to use various types of fuel are a few of the many advantages of diesel engines. However, a major disadvantage is that their exhaust emissions are more harmful to humans and the environment than that of conventional engine. Consequently, the provisions of the international emissions standards for diesel engine equipped passenger cars, commercial vehicles, and ships have become more stringent. These standards include the EU Euro 6, the IMO MEPC Tier 3, and the US EPA Tier 4. Ryu et al. published a study that applied fuel additives to two-stroke diesel engines. In this study, a four-stroke diesel engine using diesel oil for a generator is utilized as the test subject, and an experiment is performed to verify whether fuel additive can be used to improve performance and exhaust emissions. In addition, this experimental study presents research results for the application of fuel additives in both two-stroke and four-stroke diesel engines. The experimental results were compared and analyzed by placing an oil-soluble calcium-based organometallic compound in diesel oil. The results confirmed that the addition of fuel additive improved the performance (fuel consumption rate, exhaust gas temperature) and exhaust emissions (NOx, CO) of the diesel engine.

Electrodeposition and Characterization of p-type SbxTey Thermoelectric Thin Films (전착법에 의한 p-형 SbxTey 박막 형성 및 열전특성 평가)

  • Park, Mi-Yeong;Lim, Jae-Hong;Lim, Dong-Chan;Lee, Kyu-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.192-195
    • /
    • 2011
  • The electro-deposition of compound semiconductors has been attracting more attention because of its ability to rapidly deposit nanostructured materials and thin films with controlled morphology, dimensions, and crystallinity in a costeffective manner (1). In particular, low band-gap $A_2B_3$-type chalcogenides, such as $Sb_2Te_3$ and $Bi_2Te_3$, have been extensively studied because of their potential applications in thermoelectric power generator and cooler and phase change memory. Thermoelectric $Sb_xTe_y$ films were potentiostatically electrodeposited in aqueous nitric acid electrolyte solutions containing different ratios of $TeO_2$ to $Sb_2O_3$. The stoichiometric $Sb_xTe_y$ films were obtained at an applied voltage of -0.15V vs. SCE using a solution consisting of 2.4 mM $TeO_2$, 0.8 mM $Sb_2O_3$, 33 mM tartaric acid, and 1M $HNO_3$. The stoichiometric $Sb_xTe_y$ films had the rhombohedral structure with a preferred orientation along the [015] direction. The films featured hole concentration and mobility of $5.8{\times}10^{18}/cm^3$ and $54.8\;cm^2/V{\cdot}s$, respectively. More negative applied potential yielded more Sb content in the deposited $Sb_xTe_y$ films. In addition, the hole concentration and mobility decreased with more negative deposition potential and finally showed insulating property, possibly due to more defect formation. The Seebeck coefficient of as-deposited $Sb_2Te_3$ thin film deposited at -0.15V vs. SCE at room temperature was approximately 118 ${\mu}V/K$ at room temperature, which is similar to bulk counterparts.