• Title/Summary/Keyword: Compound Noun Decomposition

Search Result 11, Processing Time 0.021 seconds

Compound Noun Decomposition by using Syllable-based Embedding and Deep Learning (음절 단위 임베딩과 딥러닝 기법을 이용한 복합명사 분해)

  • Lee, Hyun Young;Kang, Seung Shik
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.74-79
    • /
    • 2019
  • Traditional compound noun decomposition algorithms often face challenges of decomposing compound nouns into separated nouns when unregistered unit noun is included. It is very difficult for those traditional approach to handle such issues because it is impossible to register all existing unit nouns into the dictionary such as proper nouns, coined words, and foreign words in advance. In this paper, in order to solve this problem, compound noun decomposition problem is defined as tag sequence labeling problem and compound noun decomposition method to use syllable unit embedding and deep learning technique is proposed. To recognize unregistered unit nouns without constructing unit noun dictionary, compound nouns are decomposed into unit nouns by using LSTM and linear-chain CRF expressing each syllable that constitutes a compound noun in the continuous vector space.

Korean Compound Noun Decomposition and Semantic Tagging System using User-Word Intelligent Network (U-WIN을 이용한 한국어 복합명사 분해 및 의미태깅 시스템)

  • Lee, Yong-Hoon;Ock, Cheol-Young;Lee, Eung-Bong
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.63-76
    • /
    • 2012
  • We propose a Korean compound noun semantic tagging system using statistical compound noun decomposition and semantic relation information extracted from a lexical semantic network(U-WIN) and dictionary definitions. The system consists of three phases including compound noun decomposition, semantic constraint, and semantic tagging. In compound noun decomposition, best candidates are selected using noun location frequencies extracted from a Sejong corpus, and re-decomposes noun for semantic constraint and restores foreign nouns. The semantic constraints phase finds possible semantic combinations by using origin information in dictionary and Naive Bayes Classifier, in order to decrease the computation time and increase the accuracy of semantic tagging. The semantic tagging phase calculates the semantic similarity between decomposed nouns and decides the semantic tags. We have constructed 40,717 experimental compound nouns data set from Standard Korean Language Dictionary, which consists of more than 3 characters and is semantically tagged. From the experiments, the accuracy of compound noun decomposition is 99.26%, and the accuracy of semantic tagging is 95.38% respectively.

Effects of word frequency and semantic transparency on decomposition processes of compound nouns (사용빈도와 의미투명도가 복합명사의 분리처리에 미치는 효과)

  • Lee, Tae-Yeon
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.4
    • /
    • pp.371-398
    • /
    • 2007
  • This study examined effects of word frequency and semantic transparency on decomposition processes of compound nouns by semantic priming task and repetition priming task. In Experiment 1, it was investigated that decomposition process depended on word frequency of compound noun. Semantic priming effects were found In the compound noun's associate rendition consistently, and repetition priming effects were found in the whole rendition as well as in the part condition irrespective of word frequency and SOA. These results implied that compound noun was processed through decomposition process path and direct access path. In Experiment 2, Effects of semantic transparency on decomposition processes of compound nouns were examined. Semantic priming effects were found when compound nouns' associates were presented as primes irrespective of semantic transparency and SOA, and results were the same as experiment 1b in repetition priming task. Results of experiment 1 and 2 implies that compound nouns are interpreted by interactive activation processes of attributes activated by decomposition path and direct access path.

  • PDF

Korean Compound Noun Decomposition using Noun Bigram Model (명사 brigram 모델을 이용한 한국어 복합명사 분해)

  • Kang, Min-Kyu;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.9-14
    • /
    • 2010
  • 본 논문에서는 명사의 띄어쓰기 bigram과 단일명사 정보를 이용하여 복합명사를 분해하는 방법을 제시한다. 붙여쓰기와 띄어쓰기를 모두 허용하는 복합명사의 특징에 따라 띄어쓰기 bigram으로 후보를 선정할 경우, 분해시간과 후보의 수를 크게 줄일 수 있으며, 긴 음절의 복합명사도 bigram의 chain을 통해 빠르게 후보 조합이 가능하다. 분해 후보가 복수일 경우, 명사 간 bigram 확률을 계산하여 최적의 분해 후보를 선정한다.

  • PDF

Korean Word Segmentation and Compound-noun Decomposition Using Markov Chain and Syllable N-gram (마코프 체인 밀 음절 N-그램을 이용한 한국어 띄어쓰기 및 복합명사 분리)

  • 권오욱
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.274-284
    • /
    • 2002
  • Word segmentation errors occurring in text preprocessing often insert incorrect words into recognition vocabulary and cause poor language models for Korean large vocabulary continuous speech recognition. We propose an automatic word segmentation algorithm using Markov chains and syllable-based n-gram language models in order to correct word segmentation error in teat corpora. We assume that a sentence is generated from a Markov chain. Spaces and non-space characters are generated on self-transitions and other transitions of the Markov chain, respectively Then word segmentation of the sentence is obtained by finding the maximum likelihood path using syllable n-gram scores. In experimental results, the algorithm showed 91.58% word accuracy and 96.69% syllable accuracy for word segmentation of 254 sentence newspaper columns without any spaces. The algorithm improved the word accuracy from 91.00% to 96.27% for word segmentation correction at line breaks and yielded the decomposition accuracy of 96.22% for compound-noun decomposition.

Compound Noun Decomposition by using Bi-LSTM and Linear-chain CRF (양방향 LSTM과 선형체인 CRF를 이용한 복합명사 분해)

  • Lee, Hyun-Young;Kang, Seung-Shik
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.719-720
    • /
    • 2018
  • 복합명사 분해 문제를 태그열 부착 문제로 정의하고 음절 임베딩과 딥러닝을 이용하여 복합명사를 분해하는 방법을 제안한다. 임베딩 방식으로는 음절 단위로 복합명사에 출현한 음절들을 벡터 공간에 표현하고 양방향 LSTM과 선형체인(linear-chain) CRF를 이용하여 복합명사 분해 태그를 부착하여 복합명사를 단위명사들로 분해하였다.

Error Correction Method for Korean Compound Noun Decomposition (한국어 복합명사 분해 오류 교정 기법)

  • Kang, Min-Kyu;Kang, Seung-Shik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.254-259
    • /
    • 2010
  • 복합명사의 구성요소로 미등록어, 1음절어, 접사 등이 포함된 경우에 복합명사 분해기의 분해 결과가 분해중의성을 보이게 된다. 특정 복합명사에 대한 분해 결과가 잘못된 것일 경우, 이를 분해 오류로 판단하고, 재처리과정을 통해 교정해야 한다. 본 논문에서는 복합명사의 분해 결과에서 분해 오류에 대하여 각 구성명사의 빈도 정보를 통해서 오류 여부를 판단하고, 적절한 재분해 결과를 제공하여 분해 오류를 교정하는 방법을 제안한다.

  • PDF

Korean Compound Noun Decomposition Only Using Syllabic Information (음절 정보만 이용한 한국어 복합 명사 분해)

  • Park, Seong-Bae;Zhang, Byoung-Tak
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.33-39
    • /
    • 2003
  • 한국어에서는 복합 명사 생성이 매우 자유스럽다. 즉, 독립된 명사를 연속으로 붙여 쓰는 것이 가능하다. 하지만, 기계번역이나 정보 검색과 같이 복합 명사를 처리하는 시스템에서 정확한 분석을 위해서는 복합 명사를 다시 단일 명사들로 분해하는 과정이 필요하다. 본 논문에서는 한국어 복합 명사 분해를 위해 GECORAM(GEneralized Combination of Rule-based learning And Memory-based learning) 알고리듬을 제시한다. 규칙 학습 알고리듬의 장점은 생성된 학습 결과를 사람이 쉽게 이해할 수 있다는 점이지만, 다른 지도학습 알고리듬에 비해 성능이 떨어진다는 단점이 있다. 본 논문에서는 이를 위해 규칙 학습 알고리듬과 기억기반 학습을 결합하는 방법을 제시한다. 실험 결과, GECORAM 알고리듬은 규칙 기반 학습이나 기억 기반 학습을 단독으로 쓰는 경우보다 높은 정확도를 보였다.

  • PDF

Overview of Automatic Spacing and Compound Noun Decomposition: 2018 Korean Natural Language Processing Contest (자동띄어쓰기 오류 수정 및 복합명사 분해 개요: 2018 차세정 언어처리 경진대회)

  • Choi, Jin-Hyuk;Ryu, Pum-Mo;Oh, Hyo-Jung
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.193-196
    • /
    • 2018
  • 차세대정보컴퓨팅 개발사업 협의회에서 주최하고 한국어 정보처리 원천기술 연구개발 사업단에서 주관하는 2018 차세정 언어처리 경진대회가 개최되었다. "한국어 자동 띄어쓰기"와 "한국어 복합명사 분해"의 두 태스크로 진행되었고 각각 4팀, 2팀이 참가하였다. 주최 측에서 제공한 데이터만을 활용하는 closed 트랙과 각 참가팀이 추가 데이터를 활용하는 open 트랙으로 구분하여 평가하였다.

  • PDF

Error Detection Method for Korean Compound Noun Decomposition (한국어 복합명사 분해 오류 탐지 기법)

  • Kang, Minkyu;Seungshik, Kang
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.181-185
    • /
    • 2009
  • 복합명사를 분해하는데 있어서 발생하는 분해오류들은 대부분 예외상황들로 취급된다. 전체적으로 차지하는 비중은 크지 않은데 오류 처리를 위해 들어가는 비용이 상대적으로 크기 때문이다. 하지만 분해된 데이터를 색인기나 문서분류기, 기계번역기 등에 실제로 적용해야 할 경우, 분해오류들을 수정해주어야 더 나은 성능을 보일 수 있기 때문에 분해오류를 찾아내고 수정하는 방법을 고안해야 한다. 본 논문에서는 복합명사 분해기에서 추출된 결과를 살펴보고, 주요 분해오류들이 가진 공통적인 특징을 파악하여 분해오류를 발견하는 방법을 생각해보고자 한다.

  • PDF