• Title/Summary/Keyword: Compost biofilter

Search Result 56, Processing Time 0.025 seconds

Performance Analysis for Ammonia Reduction of Biofilter Using Swine Compost as Filter Material (돈분퇴비를 여재로 이용한 Biofilter의 암모니아 제거효율)

  • Jang, Young-Soo;Oh, In-Hwan;Hwang, Hyun-Seob;Park, Sang-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.253-259
    • /
    • 2008
  • In this paper an optimum design of a lab-scale biofilter for absorbing ammonia has been proposed and analyzed. This biofilter is using pine chaff and wood shaving as filter materials. It is assumed that the biofilter can be used as a storage tank of swine manure slurry or swine stall. To evaluate the biofilter performance, the ammonia, mainly offensive odor ingredient, was measured. Swine compost was mixed with filter materials in ratio of 1:1 on weight base. Each test continued for 20 days. The ammonia emissions were reduced by 97.9% and 98.3% in case of using biofilter filled with pine chaff and compost, and wood shaving and compost, respectively. The system was tested with and without adding compost. It was found that the biofilter with wood shaving and compost has an ammonia removal efficiency of 94.1%, while biofilter with wood shaving only has 85.3%. The biofilter with wood shaving and compost showed 8.8% higher removal efficiency than that of wood shaving only. By mixing the compost, the number of microorganism was found to be about 2.3 times more than that of wood shaving only. Therefore it can be concluded that adding compost has a positive effect on the formation of microorganism.

An Experimental Study on the Toluene Control Characteristics of Biofilter Packed with Compost, Peatmoss and GAC (Compost, Peatmoss, GAC의 복합 메디아로 충전된 Biofilter의 Toluene 제어특성에 관한 실험적 연구)

  • Eom, Yun-Sung;Han, Se-Hyun;Jung, Yong-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.265-276
    • /
    • 2007
  • The primary objective of this study is to investigate the effect of media on the performance of biofilters. Two types of experiments were carried out in this study. The first type of experiment used a biofilter with the media composed of three different packing materials of compost, peatmoss and GAC(granular activated carbon), whereas the second type used a biofilter with the media composed of compost only. It was found from the two experiments that the biofilter composed of compost, peatmoss and GAC showed better performance than the one composed of compost only with the higher toluene removal efficiency, lower pressure drop, and more uniform media moisture content. In particular, no appreciable media compression occurred for the biofilter composed of compost, peatmoss and GAC, whereas significant media compression took place in the biofilter composed of compost only. As suggested by the other researchers, it is likely that GAC may be responsible for the higher toluene removal efficiency in the case of the biofilter composed of mixed media especially for the early stage of biofiltration due to its adsorption capability of toluene of such high concentration as 300 ppm. It was also regarded that GAC may playa major role in maintaining lower media pressure drop in the case of the mixed media than the media with compost only because of its mechanical strength resisting to the compression. Nonetheless, further refined experiments may need to draw more accurate conclusion. The results of the additional test run using the same mixed media showed that the biofilter system using the mixed media can be consistently operated for more than 100 days very stably despite sudden change in operating conditions of temperature and flow rate.

Application of tire powder and food waste compost as biofilter materials to degrade volatile organic compounds

  • Oh, Dong-Ik;Lee, Jung-Ku;Kyoungphile Nam;Kim, Jae-Young
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.117-121
    • /
    • 2001
  • The present study has been conflicted to verify the applicability of tire powder and food waste compost as biofilter materials to degrade volatile organic compounds. Batch and column tests were performed to determine the optimum ratio of tire powder to compost and the appropriate mixing type of two materials for removal of the selected VOCs, i.e., benzene, ethylbenzene, PCE, and TCE. According to batch tests, tire powder and compost mixture had faster removal rate than the compost. The biofilter column filled with tire powder and compost showed better VOC removal efficiency than that filled with only tire powder. In this study, the best removal rate was observed in the sandwich type column test of which the tire : compost weight ratio was 1:2

  • PDF

Performance Characteristics of Matured Compost Biofiltration of Ammonia Gas from the Agitated Composting (교반식 퇴비화 암모니아가스의 부숙퇴비를 이용한 탈취성능 특성)

  • 홍지형;박금주
    • Journal of Animal Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Real sized open type biofilter system was manufactured to control the odor generated from the agitated composting system which composted swine manure and sawdust mixtures. The aim of this research was to develop a biofilter system using matured compost and to evaluate the performance of the biofilter system. Average ammonia reduction rate through the biofilter was 84% during about two month period of composting. The maximum ammonia concentration after filtering was 45ppm lower than allowable value of 50ppm. It was concluded that compost can be used as a biofilter materials.

  • PDF

Performance of a Biofilter for Odor Removal during Manure Composting

  • Park, K.J.;Hong, J.H.;Choi, M.H.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • Odor generated during composting of livestock manure is mainly due to ammonia emission. Biofiltration is a desirable method to control composting odor. This study was conducted to analyze the efficiency of using fresh compost as a biofilter. A mixture of cattle manure and recycled compost was composted in a bin equipped with a suction-type blower. The exhaust gas was filtered through the fresh compost. Residence time was controlled by the flow rate of exhaust gas and the depth of filtering materials. At the aeration rate of 30 L/min(experiment I), ammonia reduction rate varied from 100% to -15% for biofilter A(residence time 56.5 s) and almost 100% for biofilter B(residence time 113 s). At the aeration rate of 30 L/min, the cumulative ammonia reduction rate was 80.5% for biofilter A and 99.9% for biofilter B. At the aeration rate of 50 L/min(experiment II), the lowest reduction rate showed a negative value of -350% on the 8th and 9th day for biofilter A(residence time 33.9 5), and 50% on the loth day for biofilter B(residence time 67.8s). At the aeration rate of 50 L/min, the cumulative ammonia reduction rate was 82.5% fur biofilter A and 97.4% for biofilter B. Filtering efficiency was influenced by residence time. The moisture content(MC) and total nitrogen(T-N) of the filtering material were increased by absorbing moisture and ammonia included in the exhaust gas, while pH was decreased and total carbon(T-C) remained unchanged during the filtering operation.

  • PDF

Control of Odor Emissions Using Biofiltration: A Case Study of Dimethyl Disulfide

  • Kim, Jo-Chun;Bora C. Arpacioglu;Eric R. Allen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E3
    • /
    • pp.153-163
    • /
    • 2002
  • A laboratory- scale dual-column biofilter system was used to study the biofiltration of dimethyl disulfide (DMDS). The gas flow rate and DMDS concentration to the biofilter were varied to study their effect on the remov-al of dimethyl disulfide. Operating parameters such as pH, temperature, and water content were monitored during the biofilter operation and necessary precautions were taken to keep these parameters within the acceptable limits. It was observed that the removal efficiency of DMDS was optimal at neutral pH values. After five month op-eration, the neutralization of the filter beds with sodium carbonate became necessary for the optimum operation of the biofilters. The microbial population already present in the compost mixtures was found to be adequate in treat-ing DMDS. The compost mixtures were found to be similar in terms of biofiltration efficiency of DMDS. However, pressure drops observed in the first column compost mixture (compost/ peat mulch) was extremely high, making this compost economically not feasible. The second mixture (compost/bark) provided pressure drops within accept-able limits. A minimum residence time of 30 seconds at the optimal operating conditions appeared to be adequate for achieving high removal efficiencies (>90%).

Reduction of Ammonia Emissions by Compost Biofilter from the Agitated Bed Composting of Hog Manure

  • J. H. Hong;Park, K. J.;Kim, J. Y.
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.46-52
    • /
    • 2002
  • Manure compost biofilter for reducing ammonia emissions at the active stage of a semi air tight and agitated bed composting of hog manure amended with sawdust were evaluated in the practical composting plant(75 m 5 m $\times$1.4 m deep). During 55 days of composting and biofiltration process, the manure compost biofilter had a ammonia reduction of 91 to 98%. Results showed that the active stage of composting maintained temperatures between 40 and 7$0^{\circ}C$ and fluctuated greatly the ammonia concentrations between 100 and 300 ppm. Ammonia concentrations in manure compost biofiltration reached within a moderate range (2-18 ppm).

Effect of Biofilter on Reducing Malodor Emission (악취 발산감소를 위한 필터의 이용 효과)

  • 김원영;정광화;노진식;김원호;전병수;류호현;전영륜
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.161-166
    • /
    • 1998
  • Controlling malodor originating from livestock feces has become a major issue, due to its influence on the health of man and livestock, together with its influences on atmospheric pollution. In this study, Five types of biofilters filled with saw-dust, night soil, fermented compost, leaf mold and a mixture(a compound of night soil, fermented compost and leaf mold at the same rates, respectively) were manufactured and tested. To study the effect of the biofilter on reducing malodor in a composting facility and swine building, a pilot scale composting facility enclosed with polyethylene film was constructed. Swine feces was composted in the facility and malodorous gas generated from the decomposition of organic matter in the feces was gathered by vacuum pump. Each biofilter achieved 87∼96% NH3 removal efficiency. This performance was maintained throughout 10 days of operation. The highest NH3 removal efficiency was achieved by leaf mold on the first day of operation period. It reduced the concentration of NH3 by about 96%. Night soil and fermented compost showed nearly equal performance of 93 to 94% for 10 days from the beginning of operation. The mixture achieved the lowest NH3 removal efficiency. It reduced NH3 concentration by about 89∼94% for 10 days from the beginning of operation. However NH3 removal efficiency of each biofilter declined with the passage of operational time. After 30 days from the beginning of operation, NH3 removal efficiency of each biofilter of each biofilter was below 60%, respectively. The concentration of H2S and CH3-SH originating from compost were equal to or less than 5mg/l and 3mg/l, respectively. After passing throughout the biofilter, the concentration of H2S and CH3-SH were not detected.

  • PDF

Application of biofilter for removing malodomus gas generated from compost factory (퇴비화 '공장에서 발생되는악취'를 제거하기 위한 Biofilter의 적용)

  • Kim, Chang-Il;Lee, Jae-Ho;Kim, Dae-Seung;Nam, Sang-Il;Nam, Yi
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.45-56
    • /
    • 1999
  • A biofilter was established to remove the ammonia, which is representative nitrogen-contained malodorous gas. in a compost factory. Removal efficiency of ammonia and hydrogen sulfide also was investigated. A quantity of malodor gas produced in a compost factory was affected greatly by the weather. compost states and working condition of a fertilizing mixer, and the produced gas concentrations doubled by above various parameters. By operating a water scrubbing system for removing water-soluble malodorous gases effectively. we could improve the removal efficiency over three times. We investigated long-term stability of biofilter under continuous gas flow(SV=500h-1) for 100 days. The results showed 30 days of microbial retention time. After the days, deodorization efficiency of biofilter was kept steady state. and the removal efficiency was kept over 95% for ammonia and 97% for hydrogen so]fide. respectively. The electric consumption of the biofilter, which could treat malodorous gas of 100$\textrm{m}^3$/min, applied in the compost factory was evaluated about 80u0day and water consumption was 80~100$\ell$/day. These results concluded that the biofilter is a excellent deodorization technology as well as cost-effective for removing malodorous gas produced in a compost factory.

  • PDF

Biofiltration of Ammonia Emission during Manure Composting (퇴비화 과정중 발생한 암모니아가스의 생물학적 탈취)

  • Park, Keum-Joo;Hong, Ji-Hyung;Cho, Ju-Sik;Choi, Won-Choon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.431-434
    • /
    • 2001
  • This study was carried oui to investigate tile filtering performance of using fresh compost as a biofilter. Three biofilter vessels were made using fresh compost as a biofilter media. A mixtures of dairy manure, soy sludge, rice hulls and sawdust were composted in a pilot scale reactor of 605L to generate tile ammonia emission. The ammonia emission from the compost reactor was passed through three biofilters and collected in the boric acid trap to measure the ammonia emission. Filtering performance was influenced by the depth of biofilter media. Efficient filtering effect was acquired for the depth above 40 cm.

  • PDF