• Title/Summary/Keyword: Composite wall

Search Result 557, Processing Time 0.032 seconds

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

The Effect of composite Graft of allogenic DFDB and Calcium Sulfate with and without Calcium Sulfate barrier in Periodontal 1 wall intrabony defects in Dogs (성견 1면 골내낭에서 탈회 냉동 건조골과 calcium sulfate 혼합 이식 및 calcium sulfate 차단막 사용이 치주조직 치유에 미치는 영향)

  • Moon, Hee-Il;Cho, Kyoo-Sung;Chai, Jung-Kiu;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.2
    • /
    • pp.219-237
    • /
    • 1998
  • Numerous bone graft materials have been used in Periodontics, in an attempt to reach the main goal of periodontal therapy, i.e. the regeneration of periodontal tissue lost due to destructive periodontal diseases. The present study investigates the effect of composite graft of DFDB and Calcium sulfate with and without Calcium sulfate barrier in Periodontal 1-wall intrabony defects in dogs. Following the initiation of general anesthesia by I.V. administration of 40mg/Kg of Pentobabital, second premolar was extracted and full thickness flap elevated. The crown portion of premolars was removed. Exposed root canals were sealed with Caviton and covered completely with flap. After the healing period of 8 weeks, the surgical sites were re-opened and 1-wall intrabony defects were created, and treated with flap operation alone(control group), with composit graft of 80% DFDB and 20% Calcium sulfate(Experimental group 1), with composite graft of DFDB and calcium sulfate with calcium sulfate membrane( Experimental group 2). Healing response was histologically observed after 8 weeks and the results were as follows : 1. New bone formation was 70 % in the control group, 93 % in the Experimental group I, 89 % in the Experimental group II. There was a no differences between Experimental groups. 2. New cementum formation was not significantly different between control and two Experimental groups. 3. The length of connective tissue adhesion was 30 % in the control, 7% in the Experimental group I and 11 % in the Experimental group II. 4. After 8weeks, calcium sulfate was completely resorbed, while DFDB particle remained. These results suggest that the use of composite graft of allogenic DFDB and Calcium sulfate with and without Calcium sulfate barrier in periodontal 1 wall intrabony defects have little effect on connective tissue adhesion, but has beneficial effect on new alveolar bone and new cementum formation, and prevent downgrowth of epithelium and connective tissue effectively.

  • PDF

Effect of The Bending Strain of FRP Tube for Composite Bushing with Winding Tension (와인딩 장력이 composite 부싱용 FRP tube의 굽힘변형에 미치는 영향)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.380-381
    • /
    • 2009
  • This paper describes effect of the bending strain of FRP tube for composite bushing with winding tension. The composite bushing can be formed, by adding silicone rubber sheds to a tube of composite materials. The FRP tube is internal insulating part of a composite bushing and is designed to ensure the mechanical characteristics. Generally the properties of FRP tube can be influenced by the winding angle, wall thickness and winding tension. As winding tension is increased glass contents was increased in the range of 70.4~76.6%. In the bending test, winding tension is increased residual displacement was decreased in the range of 14.0~12.2 mm.

  • PDF

A Simple Beam Model for Thin-Walled Composite Blades with Closed, Two-Cell Sections (폐쇄형 이중세포로 된 박벽 복합재료 블레이드의 단순화 해석 모델)

  • Jung, Sung-Nam;Park, Il-Ju;Lee, Ju-Young;Lee, Jung-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.187-190
    • /
    • 2005
  • A simple beam model based on a mixed method is proposed for the analysis of thin-walled composite blades with a two-cell airfoil section. A semi-complementary energy functional is used to obtain the beam force-displacement relations. The theory accounts for the effects of elastic couplings, shell wall thickness, warping, and warping restraint. All the kinematic relations as well as the cross-section stiffnesses are evaluated in a closed-form through the current beam formulation. The theory has been applied to two-cell composite blades with extension-torsion couplings and fairly good correlation has been observed in comparison with a detailed analysis and other literature.

  • PDF

Properties of Composite Bushing with Filament Winding Tension (필라멘트 와인딩 장력에 따른 Composite Bushing의 특성에 관한 연구)

  • Cho, Han-Goo;Kim, Kwang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.34-34
    • /
    • 2010
  • This paper describes effect of the bending deformation of high voltage composite bushing with winding tension. The composite bushing can be formed, by adding silicone rubber sheds to a tube of composite materials. The FRP tube is internal insulating part of a composite bushing and is designed to ensure the mechanical characteristics. Generally the properties of FRP tube can be influenced by the winding angle, wall thickness and winding tension. As winding tension is increased glass contents was increased in the range of 70.4~76.6%. In the bending test, winding tension is increased residual deflection was decreased in the range of 14.0~12.2 mm.

  • PDF

Transverse Shear Behavior of Thin-Walled Composite Beams Using a Mixed Method (혼합법을 이용한 박벽 복합재료 보의 전단변형거동 해석)

  • Park, Il-Ju;Jeong, Sung-Nam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.194-197
    • /
    • 2005
  • In this work, a mixed beam approach is performed to identify the transverse shear behavior of thin-walled composite beams with closed cross-sections. The analytical model includes the effects of elastic couplings, shell wall thickness, and torsion warping. The distributions of shear flow across the section as well as the shear correction coefficients are obtained in a closed form in the beam formulation. The influence of transverse shear deformation on the static behavior of closed cross-section composite beams is also investigated in the analysis

  • PDF

Reduction of Residual Stresses in Thick-Walled Composite Tubes (두꺼운 벽을 갖는 복합재료 튜브의 잔류응력 저감 연구)

  • 신의섭;정성남
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.176-179
    • /
    • 2003
  • This paper deals with the optimum design of thick-walled multi-layered composite tubes by minimizing the process-induced residual stresses under some constraints of structural stiffnesses. An analytic model based on quasi-static thermoelasticity is adopted for the calculation of the residual stresses in the multi-layered composite tubes. The numerical results of optimization show that, in the case of cross-ply CFRP tubes, the residual stresses can be reduced to a certain level by controlling ply thicknesses. However, the optimized tubes may be susceptible to cracking because the transverse residual stress is still large in a strength-based sense. To further suppress the residual stresses, the effects of stacking sequence, wall thickness and axial pretension on the optimum solutions are examined.

  • PDF

Transmission loss of Honeycomb Composite Panel of the Tilting Train (틸팅 열차용 허니콤 복합판재의 투과손실)

  • Kim, Seock-Hyun;Lim, Bong-Gi;Kim, Jae-Chul;Jang, Yun-Tae
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1088-1091
    • /
    • 2009
  • In a tilting train, aluminium honeycomb composite panel is used for the high speed and light weight. Side wall of the tilting train includes the composite panel of carbon fiber, aluminium honeycomb and epoxy fiber as a main structure. In this study, we measure the transmission loss (TL) of the honeycomb composite panel and analyse the sound insulation performance by using the orthotropic plate model. We investigate experimentally how the air gap, plywood and glass wool improve the sound insulation performance of the composite panel. The purpose of the study is to provide practical information for the improvement of TL of the honeycomb composite panel used for the tilting train.

  • PDF

Influence of special plaster on the out-of-plane behavior of masonry walls

  • Donduren, Mahmut Sami;Kanit, Recep;Kalkan, Ilker;Gencel, Osman
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.769-788
    • /
    • 2016
  • The present study aimed at investigating the effect of a special plaster on the out-of-plane behavior of masonry walls. A reference specimen, plastered with conventional plaster, and a specimen plastered with a special plastered were tested under reversed cyclic lateral loading. The specimens were identical in dimensions and material properties. The special plaster contained an additive, which increased the adherence strength of the plaster to the wall. The amount of the additive in the mortar was adjusted based on the preliminary material tests. The influence of the plaster on the wall behavior was evaluated according to the initial cracking load, type of failure, energy absorption capacity (modulus of toughness), and crack pattern of the wall. Despite having limited contribution to the ductility, the special plaster increased the ultimate load capacity of the wall about 25%. The failure mode of the wall with special plaster resembled the plastic failure mechanism of a reinforced concrete slab in the formation of yielding lines along the wall. The deflection at failure and the modulus of toughness of the wall with special plaster were measured to be in order of 60% and 75% of the corresponding values of the reference wall.

Fire resistance tests of LSF walls under combined compression and bending actions

  • Peiris, Mithum;Mahendran, Mahen
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.483-500
    • /
    • 2022
  • Cold-formed steel wall panels sheathed with gypsum plasterboard have shown superior thermal and structural performance in fire. Recent damage caused by fire events in Australia has increased the need for accurate fire resistance ratings of wall systems used in low- and mid-rise construction. Past fire research has mostly focused on light gauge steel framed (LSF) walls under uniform axial compression and LSF floors under pure bending. However, in reality, LSF wall studs may be subject to both compression and bending actions due to eccentric loading at the wall to-roof or wall-to-floor connections. In order to investigate the fire resistance of LSF walls under the effects of these loading eccentricities, four full-scale standard fire tests were conducted on 3 m × 3 m LSF wall specimens lined with two 16 mm gypsum plasterboards under different combinations of axial compression and lateral load ratios. The findings show that the loading eccentricity can adversely affect the fire resistance level of the LSF wall depending on the magnitude of the eccentricity, the resultant compressive stresses in the hot and cold flanges of the wall studs caused by combined loading and the temperatures of the hot and cold flanges of the studs. Structural fire designers should consider the effects of loading eccentricity in the design of LSF walls to eliminate their potential failures in fire.