• Title/Summary/Keyword: Composite theory

Search Result 1,615, Processing Time 0.022 seconds

Wave Propagation of Laminated Composites by the Hgih-Velocity Impact Experiment (고속 충격실험에 의한 적층 복합재의 파동전파에 관한 연구)

  • 김문생;김남식;박승범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1931-1939
    • /
    • 1993
  • The wave propagation characteristics of laminated composites subjected to a transverse high-velocity impact of a steel ball is investigated. For this purpose, high-velocity impact experiments were conducted to obtain the strain response histories, and a finite element analysis based on the higher-order shear deformation theory in conjunction with the static contact law is used. Test materials for investigation are glass/epoxy laminated composite materials with $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}]_{2s}$ and $[90^{\circ}/-45^{\circ}/90^{\circ}-45^{\circ}/90^{\circ}]_{2s}$ stacking sequences. As a result, the strain responses obtained from the experiments represented the wave propagation characteristics in the transversely impact, also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well.

Analysis of the margin level in the KOSPI200 futures market (KOSPI200 선물 시장의 증거금 수준에 대한 연구)

  • Kim, Jun;Choe, In-Chan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.734-737
    • /
    • 2004
  • When the margin level is set relatively low, margin violation probability increases and the default probability of the futures market rises. On the other hand, if the margin level is set high, the margin violation probability decreases, but the futures market becomes less attractive to hedgers as the investor's opportunity cost increases. In this paper, we investigate whether the movement of KOSPI200(Korea Composite Stock Price Index 200) futures daily prices can be modeled with the extreme value theory. Base on this investigation, we examine the validity of the margin level set by the extreme value theory. Computational results are presented to compare the extreme value distribution and the empirical distribution of margin violation in KOSPI200. Some observations and implications drawn from the computational experiment are also discussed.

  • PDF

The Crack Problem for Functionally Graded Piezoelectric Ceramic Strip (기능 경사 압전 세라믹 스트립의 균열에 관한 연구)

  • 신정우;김성찬
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.37-42
    • /
    • 2002
  • We consider the problem of determining the singular stresses and electric fields in a functionally graded piezoelectric ceramic strip containing a Griffith eccentric crack under anti-plane shear loading with the theory of linear piezoelectricity. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate are obtained.

Effects of Elastic Modulus Ratio on Internal Stresses in Short Fiber Composites (단섬유 복합체에서 탄성계수비가 내부응력에 미치는 영향)

  • 김홍건;노홍길
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.73-78
    • /
    • 2004
  • The conventional SLT(Shear Lag Theory) which has been proven that it can not provide sufficiently accurate strengthening predictions in elastic regime when the fiber aspect ratio is small. This paper is an extented work to improve it by modifying the load transfer mechanism called NSLT(New Shear Lag Theory), which takes into account the stress transfer across the fiber ends and the SCF(Stress Concentration Factor) that exists in the matrix regions near the fiber ends. The key point of the model development is to determine the major controlling factor among the material and geometrical coefficients. It is found that the most affecting factor is the fiber/matrix elastic modulus ratio. It is also found that the proposed model gives a good result that has the capability to correctly predict the elastic properties such as interfacial shear stresses and local stress variations in the small fiber aspect ratio regime.

Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory

  • Saidi, Hayat;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, El Abbas Adda
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.221-245
    • /
    • 2013
  • This paper presents an analytical solution to the thermomechanical bending analysis of functionally graded sandwich plates by using a new hyperbolic shear deformation theory in which the stretching effect is included. The modulus of elasticity of plates is assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. The effects of functionally graded material (FGM) layer thickness, volume fraction index, layer thickness ratio, thickness ratio and aspect ratio on the deflections and stresses of functionally graded sandwich plates are investigated.

Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories

  • Ezzat, M.A.;El-Bary, A.A.
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • A unified mathematical model of phase-lag Green-Naghdi magneto-thermoelasticty theories based on fractional derivative heat transfer for perfectly conducting media in the presence of a constant magnetic field is given. The GN theories as well as the theories of coupled and of generalized magneto-thermoelasticity with thermal relaxation follow as limit cases. The resulting nondimensional coupled equations together with the Laplace transforms techniques are applied to a half space, which is assumed to be traction free and subjected to a thermal shock that is a function of time. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The predictions of the theory are discussed and compared with those for the generalized theory of magneto-thermoelasticity with one relaxation time. The effects of Alfven velocity and the fractional order parameter on copper-like material are discussed in different types of GN theories.

Vibration and buckling of laminated beams by a multi-layer finite element model

  • Kahya, Volkan;Turan, Muhittin
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.415-426
    • /
    • 2018
  • This paper presents a multi-layer finite element for buckling and free vibration analyses of laminated beams based on a higher-order layer-wise theory. An N-layer beam element with (9N + 7) degrees-of-freedom is proposed for analyses. Delamination and slip between the layers are not allowed. Element matrices for the single- and multi-layer beam elements are derived by Lagrange's equations. Buckling loads and natural frequencies are calculated for different end conditions and lamina stacking. Comparisons are made to show the accuracy of proposed element.

Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells

  • Torabi, Jalal;Ansari, Reza
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.313-323
    • /
    • 2018
  • A numerical study is performed to investigate the impacts of thermal loading on the vibration and buckling of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) conical shells. Thermo-mechanical properties of constituents are considered to be temperature-dependent. Considering the shear deformation theory, the energy functional is derived, and applying the variational differential quadrature (VDQ) method, the mass and stiffness matrices are obtained. The shear correction factors are accurately calculated by matching the shear strain energy obtained from an exact three-dimensional distribution of the transverse shear stresses and shear strain energy related to the first-order shear deformation theory. Numerical results reveal that considering temperature-dependent material properties plays an important role in predicting the thermally induced vibration of FG-CNTRC conical shells, and neglecting this effect leads to considerable overestimation of the stiffness of the structure.

FLEXIBLE ARM POSITIONING USING $H_\infty$ CONTROL THEORY WITH OPTIMUM SENSOR LOCATION

  • Estiko, Rijanto;Nishigaya, Shinya;Moran, Antonio;Hayase, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.461-466
    • /
    • 1994
  • This paper is concerned with the positioning control of a flexible arm system using H$_{\infty}$ control theory with optimum sensor location. Firstly, by virtue of the orthogonality of the flexible modes of the flexible arm a reduced order model of the tributed parameter system(DPS) representing the arm has formulated. The dynamical coupling between the flexible arm and DC motor has been considered to formulate an motor composite model. In order to achieve precise positioning with vibration attenuation, sensors have been optimally located. Finally, a robust H$_{\infty}$ controller was designed and the performance of the positioning system has been analyzed.d.

  • PDF

Analysis of composite plates using various plate theories -Part 1: Formulation and analytical solutions

  • Bose, P.;Reddy, J.N.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.583-612
    • /
    • 1998
  • A unified third-order laminate plate theory that contains classical, first-order and third-order theories as special cases is presented. Analytical solutions using the Navier and L$\acute{e}$vy solution procedures are presented. The Navier solutions are limited to simply supported rectangular plates while the L$\acute{e}$vy solutions are restricted to rectangular plates with two parallel edges simply supported and other two edges having arbitrary combination of simply supported, clamped, and free boundary conditions. Numerical results of bending and vibration for a number of problems are discussed in the second part of the paper.