• 제목/요약/키워드: Composite theory

검색결과 1,605건 처리시간 0.026초

N-値 多變數 論理回路의 實現을 爲한 Switching函數

  • 林寅七 = In-Chil Lim;鄭正和
    • 정보과학회지
    • /
    • 제3권2호
    • /
    • pp.18-23
    • /
    • 1985
  • N値演算回路를 實現하기 爲해 基本函數로 多値論理和, 論理 積 및 Xabc를 定하여 多値多變數 Switching函數를 展開하였다. 이 Switching 函數의 簡單化에 對하여 생각하였으며 N値演算回路의 實現을 容易하게 하기 위하여 現在 使用되 고 있는 2値論理回路素子 및 2値 Etclusive-OR 論理를 應用할 수 있도록 Switching函數를 展開하였다. N値多變數演算回路로써 4値全加算器 및 半加算機를 一例로하여 論理式을 세웠다. 또, 2値論理系와 倂用할 수 있는 BCD 入力 10値全 加算器의 論理式을 展開하였다.

Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites

  • Fenjan, Raad M.;Faleh, Nadhim M.;Ahmed, Ridha A.
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.147-156
    • /
    • 2020
  • This research is related to nonlinear stability analysis of advanced microbeams reinforced by Graphene Platelets (GPLs) considering generic geometrical imperfections and thermal loading effect. Uniform, linear and nonlinear distributions of GPLs in transverse direction have been considered. Imperfection sensitivity of post-bucking behaviors of the microbeam to different kinds of geometric imperfections have been examined. Geometric imperfection is first considered to be identical as the first buckling mode, then a generic function is employed to consider sine-type, local-type and global-type imperfectness. Modified couple stress theory is adopted to incorporate size-dependent behaviors of the beam at micro scale. The post-buckling problem is solved analytically to derive load-amplitude curves. It is shown that post-buckling behavior of microbeam is dependent on the type geometric imperfection and its magnitude. Also, post-buckling load can be enhanced by adding more GPLs or selecting a suitable distribution for GPLs.

Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity

  • Said, Samia M.;Abd-Elaziz, Elsayed M.;Othman, Mohamed I.A.
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.617-629
    • /
    • 2020
  • The purpose of this paper is to depict the effect of rotation and initial stress on a magneto-thermoelastic medium with diffusion. The problem discussed within memory-dependent derivative in the context of the three-phase-lag model (3PHL), Green-Naghdi theory of type III (G-N III) and Lord and Shulman theory (L-S). Analytical expressions of the considered variables are obtained by using Laplace-Fourier transforms technique. Numerical results for the field quantities given in the physical domain and illustrated graphically in the absence and presence of a magnetic field, initial stress as well as the rotation. The differences in variable thermal conductivity are also presented at different parameter of thermal conductivity. The numerical results of the field variables are presented graphically to discuss the effect of various parameters of interest. Some special cases are also deduced from the present investigation.

Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.909-924
    • /
    • 2015
  • This paper investigates the vibration phenomenon of a nanobeam subjected to a time-dependent heat flux. Material properties of the nanobeam are assumed to be graded in the thickness direction according to a novel exponential distribution law in terms of the volume fractions of the metal and ceramic constituents. The upper surface of the functionally graded (FG) nanobeam is pure ceramic whereas the lower surface is pure metal. A nonlocal generalized thermoelasticity theory with dual-phase-lag (DPL) model is used to solve this problem. The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation time, and without energy dissipation can extracted as limited and special cases of the present model. An analytical technique based on Laplace transform is used to calculate the variation of deflection and temperature. The inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of the phase-lags (PLs), nonlocal parameter and the angular frequency of oscillation of the heat flux on the lateral vibration, the temperature, and the axial displacement of the nanobeam are studied.

Free vibration of functionally graded thin beams made of saturated porous materials

  • Galeban, M.R.;Mojahedin, A.;Taghavi, Y.;Jabbari, M.
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.999-1016
    • /
    • 2016
  • This study presents free vibration of beam made of porous material. The mechanical properties of the beam is variable in the thickness direction and the beam is investigated in three situations: poro/nonlinear nonsymmetric distribution, poro/nonlinear symmetric distribution, and poro/monotonous distribution. First, the governing equations of porous beam are derived using principle of virtual work based on Euler-Bernoulli theory. Then, the effect of pores compressibility on natural frequencies of the beam is studied by considering clamped-clamped, clamped-free and hinged-hinged boundary conditions. Moreover, the results are compared with homogeneous beam with the same boundary conditions. Finally, the effects of poroelastic parameters such as pores compressibility, coefficients of porosity and mass on natural frequencies has been considered separately and simultaneously.

다층금속 경사재의 변형양태의 수치적연구 (Numerical simulation for Deformation Shape of Declined Multilayer Metals Material)

  • 정태훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.124-128
    • /
    • 2004
  • By the use of a similar numerical method as that in the previous paper, the forming limit strain by coaling method of clad sheet metals is investigated, in which the FEM is applied and J2G(J$_2$-Gotoh's corner theory) is utilized as the plasticity constitutive equation. Declined Multilayer Metals Materials are stretched in a plane-strain state, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such composite sheets are clearly illustrated. It is concluded that, in the bonded state, the higher limiting strain of one layer is reduced due to the lower limiting strain of the other layer and vice versa, and does not necessarily obey the rule of linear combination of the limiting strain of each layer weighted according thickness.

  • PDF

고속 충격실험에 의한 적층 복합재의 파동전파에 관한 연구 (Wave Propagation of Laminated Composites by the Hgih-Velocity Impact Experiment)

  • 김문생;김남식;박승범
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.1931-1939
    • /
    • 1993
  • The wave propagation characteristics of laminated composites subjected to a transverse high-velocity impact of a steel ball is investigated. For this purpose, high-velocity impact experiments were conducted to obtain the strain response histories, and a finite element analysis based on the higher-order shear deformation theory in conjunction with the static contact law is used. Test materials for investigation are glass/epoxy laminated composite materials with $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}]_{2s}$ and $[90^{\circ}/-45^{\circ}/90^{\circ}-45^{\circ}/90^{\circ}]_{2s}$ stacking sequences. As a result, the strain responses obtained from the experiments represented the wave propagation characteristics in the transversely impact, also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well.

KOSPI200 선물 시장의 증거금 수준에 대한 연구 (Analysis of the margin level in the KOSPI200 futures market)

  • 김준;최인찬
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.734-737
    • /
    • 2004
  • When the margin level is set relatively low, margin violation probability increases and the default probability of the futures market rises. On the other hand, if the margin level is set high, the margin violation probability decreases, but the futures market becomes less attractive to hedgers as the investor's opportunity cost increases. In this paper, we investigate whether the movement of KOSPI200(Korea Composite Stock Price Index 200) futures daily prices can be modeled with the extreme value theory. Base on this investigation, we examine the validity of the margin level set by the extreme value theory. Computational results are presented to compare the extreme value distribution and the empirical distribution of margin violation in KOSPI200. Some observations and implications drawn from the computational experiment are also discussed.

  • PDF

기능 경사 압전 세라믹 스트립의 균열에 관한 연구 (The Crack Problem for Functionally Graded Piezoelectric Ceramic Strip)

  • 신정우;김성찬
    • Composites Research
    • /
    • 제15권4호
    • /
    • pp.37-42
    • /
    • 2002
  • 면외전단하중(anti-plane shear loading)을 받는 기능경사 압전 세라믹 무한 스트립(functionally graded piezoelectric ceramic strip)의 상하 양쪽 끝단의 중앙에 평행하게 존재하는 유한한 크기의 균열(Griffith crack)에 대한 특이응력(singular stress)과 전기장(electric field)을 선형 압전 이론(theory of linear piezoelectricity)을 이용하여 결정한다. 푸리에 변환(Fourier transform)을 이용하여 복합적분 방정식을 구성하며, 이를 제2종 Fredholm 적분 방정식(Fredholm integral equation of the second kind) 으로 표현한다. 또한 응력세기계수(stress intensity factor)와 에너지 해방률(energy release rate)에 대한 수치 결과를 제시하였다.

단섬유 복합체에서 탄성계수비가 내부응력에 미치는 영향 (Effects of Elastic Modulus Ratio on Internal Stresses in Short Fiber Composites)

  • 김홍건;노홍길
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.73-78
    • /
    • 2004
  • The conventional SLT(Shear Lag Theory) which has been proven that it can not provide sufficiently accurate strengthening predictions in elastic regime when the fiber aspect ratio is small. This paper is an extented work to improve it by modifying the load transfer mechanism called NSLT(New Shear Lag Theory), which takes into account the stress transfer across the fiber ends and the SCF(Stress Concentration Factor) that exists in the matrix regions near the fiber ends. The key point of the model development is to determine the major controlling factor among the material and geometrical coefficients. It is found that the most affecting factor is the fiber/matrix elastic modulus ratio. It is also found that the proposed model gives a good result that has the capability to correctly predict the elastic properties such as interfacial shear stresses and local stress variations in the small fiber aspect ratio regime.