• Title/Summary/Keyword: Composite theory

Search Result 1,605, Processing Time 0.022 seconds

Lateral-torsional buckling of prismatic and tapered thin-walled open beams: assessing the influence of pre-buckling deflections

  • Andrade, A.;Camotim, D.
    • Steel and Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.281-301
    • /
    • 2004
  • The paper begins by presenting a unified variational approach to the lateral-torsional buckling (LTB) analysis of doubly symmetric prismatic and tapered thin-walled beams with open cross-sections, which accounts for the influence of the pre-buckling deflections. This approach (i) extends the kinematical assumptions usually adopted for prismatic beams, (ii) consistently uses shell membrane theory in general coordinates and (iii) adopts Trefftz's criterion to perform the bifurcation analysis. The proposed formulation is then applied to investigate the influence of the pre-buckling deflections on the LTB behaviour of prismatic and web-tapered I-section simply supported beams and cantilevers. After establishing an interesting analytical result, valid for prismatic members with shear centre loading, several elastic critical moments/loads are presented, discussed and, when possible, also compared with values reported in the literature. These numerical results, which are obtained by means of the Rayleigh-Ritz method, (i) highlight the qualitative differences existing between the LTB behaviours of simply supported beams and cantilevers and (ii) illustrate how the influence of the pre-buckling deflections on LTB is affected by a number of factors, namely ($ii_1$) the minor-to-major inertia ratio, ($ii_2$) the beam length, ($ii_3$) the location of the load point of application and ($ii_4$) the bending moment diagram shape.

Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.773-796
    • /
    • 2014
  • This paper deals with free vibration analysis of continuous grading fiber reinforced (CGFR) and bi-directional FG annular sector plates on two-parameter elastic foundations under various boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. Results indicate that the non-dimensional natural frequency parameter of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close to that of a 2-layer. It results that the CGFR plate attains natural frequency higher than those of traditional discretely laminated composite ones and this can be a benefit when higher stiffness of the plate is the goal and that is due to the reduction in spatial mismatch of material properties. Moreover, it is shown that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional one-dimensional functionally graded material. The multidirectional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material. The new results can be used as benchmark solutions for future researches.

Buckling of restrained steel columns due to fire conditions

  • Hozjan, Tomaz;Planinc, Igor;Saje, Miran;Srpcic, Stanislav
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.159-178
    • /
    • 2008
  • An analytical procedure is presented for the determination of the buckling load and the buckling temperature of a straight, slender, geometrically perfect, axially loaded, translationally and rotationally restrained steel column exposed to fire. The exact kinematical equations of the column are considered, but the shear strain is neglected. The linearized stability theory is employed in the buckling analysis. Behaviour of steel at the elevated temperature is assumed in accordance with the European standard EC 3. Theoretical findings are applied in the parametric analysis of restrained columns. It is found that the buckling length factor decreases with temperature and depends both on the material model and stiffnesses of rotational and translational restraints. This is in disagreement with the buckling length for intermediate storeys of braced frames proposed by EC 3, where it is assumed to be temperature independent. The present analysis indicates that this is a reasonable approximation only for rather stiff rotational springs.

Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate

  • Rabia, Benferhat;Abderezak, Rabahi;Daouadji, Tahar Hassaine;Abbes, Boussad;Belkacem, Adim;Abbes, Fazilay
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.29-44
    • /
    • 2018
  • In this paper, a closed-form rigorous solution for interfacial shear stress in simply supported beams strengthened with bonded prestressed E-FGM plates and subjected to an arbitrarily positioned single point load, or two symmetric point loads is developed using linear elastic theory. This improved solution is intended for application to beams made of all kinds of materials bonded with a thin plate, while all existing solutions have been developed focusing on the strengthening of reinforced concrete beams, which allowed the omission of certain terms. The theoretical predictions are compared with other existing solutions. Finally, numerical results from the present analysis are presented to study the effects of various parameters of the beams on the distributions of the interfacial shear stresses. The results of this study indicated that the E-FGM plate strengthening systems are effective in enhancing flexural behavior of the strengthened RC beams.

Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation

  • Banh, Thanh T.;Nguyen, Xuan Q.;Herrmann, Michael;Filippou, Filip C.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.129-145
    • /
    • 2020
  • In typical, structural topology optimization plays a significant role to both increase stiffness and save mass of structures in the resulting design. This study contributes to a new numerical approach of topologically optimal design of Mindlin-Reissner plates considering Winkler foundation and mathematical formulations of multi-directional variable thickness of the plate by using multi-materials. While achieving optimal multi-material topologies of the plate with multi-directional variable thickness, the weight information of structures in terms of effective utilization of the material at the appropriate thickness location may be provided for engineers and designers of structures. Besides, numerical techniques of the well-established mixed interpolation of tensorial components 4 element (MITC4) is utilized to overcome a well-known shear locking problem occurring to thin plate models. The well-founded mathematical formulation of topology optimization problem with variable thickness Mindlin-Reissner plate structures by using multiple materials is derived in detail as one of main achievements of this article. Numerical examples verify that variable thickness Mindlin-Reissner plates on Winkler foundation have a significant effect on topologically optimal multi-material design results.

Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model

  • Salah, Fethi;Boucham, Belhadj;Bourada, Fouad;Benzair, Abdelnour;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.805-822
    • /
    • 2019
  • In this work, a simple four-variable integral plate theory is employed for examining the thermal buckling properties of functionally graded material (FGM) sandwich plates. The proposed kinematics considers integral terms which include the effect of transverse shear deformations. Material characteristics and thermal expansion coefficient of the ceramic-metal FGM sandwich plate faces are supposed to be graded in the thickness direction according to a "simple power-law" variation in terms of the "volume fractions" of the constituents. The central layer is always homogeneous and consists of an isotropic material. The thermal loads are supposed as uniform, linear, and nonlinear temperature rises within the thickness direction. The influences of geometric ratios, gradient index, loading type, and type sandwich plate on the buckling properties are examined and discussed in detail.

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure

  • Ramteke, Prashik Malhari;Panda, Subrata K.;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.865-875
    • /
    • 2019
  • The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is obtained (Hamilton's principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity (even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel and discussed in details.

Seismic behaviour of gravity load designed flush end-plate joints

  • Cassiano, David;D'Aniello, Mario;Rebelo, Carlos
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.621-634
    • /
    • 2018
  • Flush end-plate (FEP) beam-to-column joints are commonly used for gravity load resisting parts in steel multi-storey buildings. However, in seismic resisting structures FEP joints should also provide rotation capacity consistent with the global structural displacements. The current version of EN1993-1-8 recommends a criterion aiming at controlling the thickness of the end-plate in order to avoid brittle failure of the connection, which has been developed for monotonic loading conditions assuming elastic-perfectly plastic behaviour of the connection's components in line with the theory of the component method. Hence, contrary to the design philosophy of the hierarchy of resistances implemented in EN1998-1, the over strength and the hardening of the plastic components are not directly accounted for. In light of these considerations, this paper describes and discusses the results obtained from parametric finite element simulations aiming at investigating the moment-rotation response of FEP joints under cyclic actions. The influence of bolt diameter, thickness of end-plate, number of bolt rows and shape of beam profile on the joint response is discussed and design requirements are proposed to enhance the ductility of the joints.

Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.51-73
    • /
    • 2020
  • The present paper investigates the simultaneous resonance behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells with internal and external functionally graded stiffeners under the two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal. The exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material layer is located between these layers. With regard to classical shells theory, von-Kármán equation, and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The simultaneous resonance is obtained using the multiple scales method. Finally, the influences of different material and geometrical parameters on the system resonances are investigated comprehensively.

Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • This paper is presented to solve the buckling problem of functionally graded truncated conical shells subjected to displacement-dependent pressure which remains normal to the shell middle surface throughout the deformation process by the semi-analytical finite strip method. Material properties are assumed to be temperature dependent, and varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness shear flexibility with Sanders-type of kinematic nonlinearity. The element linear and geometric stiffness matrices are obtained using virtual work expression for functionally graded materials. The load stiffness also called pressure stiffness matrix which accounts for variation of load direction is derived for each strip and after assembling, global load stiffness matrix of the shell which may be un-symmetric is formed. The un-symmetric parts which are due to load non-uniformity and unconstrained boundaries have been separated. A detailed parametric study is carried out to quantify the effects of power-law index of functional graded material and shell geometry variations on the difference between follower and non-follower lateral buckling pressures. The results indicate that considering pressure stiffness which arises from follower action of pressure causes considerable reduction in estimating buckling pressure.