• 제목/요약/키워드: Composite temperature

검색결과 3,064건 처리시간 0.03초

Fabrication and Characterization of Composite LSCF-Ag Cathode for Solid Oxide Fuel Cells using Electron Beam Irradiation Process

  • Kang, Hyun Suk;Jung, Yung-Min;Song, Rak-Hyun;Peck, Dong-Hyun;Park, ChangMoon;Lee, Byung Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2969-2973
    • /
    • 2014
  • A new process to fabricate a composite LSCF-Ag cathode material for SOFCs by electron beam (e-beam) irradiation process has been suggested for operation under intermediate temperature range of $600-700^{\circ}C$. A composite LSCF-Ag cathode with uniformly coated Ag nanoparticles on the surface of the LSCF material was prepared by a facile e-beam irradiation method at room temperature. The morphology of the composite LSCF-Ag material was analyzed using a TEM, FE-SEM, and EDS. The prepared composite LSCF-Ag material can play a significant role in increasing the electro-catalytic activities and reducing the operating temperature of SOFCs. The performance of a tubular single cell prepared using the composite LSCF-Ag cathode, YSZ electrolyte and a Ni/YSZ anode was evaluated at reduced operating temperature of $600-700^{\circ}C$. The micro-structure and chemical composition of the single cell were investigated using a FE-SEM and EDS.

Failure Pressure Prediction of Composite Cylinders for Hydrogen Storage Using Thermo-mechanical Analysis and Neural Network

  • Hu, J.;Sundararaman, S.;Menta, V.G.K.;Chandrashekhara, K.;Chernicoff, William
    • Advanced Composite Materials
    • /
    • 제18권3호
    • /
    • pp.233-249
    • /
    • 2009
  • Safe installation and operation of high-pressure composite cylinders for hydrogen storage are of primary concern. It is unavoidable for the cylinders to experience temperature variation and significant thermal input during service. The maximum failure pressure that the cylinder can sustain is affected due to the dependence of composite material properties on temperature and complexity of cylinder design. Most of the analysis reported for high-pressure composite cylinders is based on simplifying assumptions and does not account for complexities like thermo-mechanical behavior and temperature dependent material properties. In the present work, a comprehensive finite element simulation tool for the design of hydrogen storage cylinder system is developed. The structural response of the cylinder is analyzed using laminated shell theory accounting for transverse shear deformation and geometric nonlinearity. A composite failure model is used to evaluate the failure pressure under various thermo-mechanical loadings. A back-propagation neural network (NNk) model is developed to predict the maximum failure pressure using the analysis results. The failure pressures predicted from NNk model are compared with those from test cases. The developed NNk model is capable of predicting the failure pressure for any given loading condition.

High Temperature Deformation Behavior of SiCp/2124Al Metal Matrix Composites

  • Tian, Y.Z.;Cha, Seung I.;Hong, Soon H.
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.69-72
    • /
    • 2002
  • The high temperature deformation behavior of SiCp/2124Al composite and 2124Al alloy was investigated by hot compression test in a temperature ranged $400~475^{\circ}C$ over a strain rate ranged $10^{-3}~1s^{-1}$. The billets of 2124Al alloy and SiCp/2124Al composite were fabricated by vacuum hot pressing process. The stress-strain curve during high temperature deformation exhibited a peak stress, and then the flow stress decreased gradually into a steady state stress with increasing the strain. It was found that the flow-softening behavior was attributed to the dynamic recovery, local dynamic recrystallization and dynamic precipitation during the deformation. The precipitation phases were identified as S' and S by TEM diffraction pattern. Base on the TEM inspection, the relationship between the Z-H parameter and subgrain size was found based on the experiment data. The dependence of flow stress on temperature and strain rate could be formulated well by a hyperbolic-sinusoidal relationship using the Zener-Hollomon parameter.

  • PDF

극저온에서 탄소 섬유/에폭시 복합재료의 군열 저항성 향상에 관한 연구 (A Study on the Improvement of Microcrack Resistance of Carbon/Epoxy Composites at Cryogenic Temperature)

  • 홍중식;김명곤;김천곤;공철원
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.49-52
    • /
    • 2005
  • In the development of a propellant tank using liquid oxygen and liquid hydrogen, the improvement of microcrack resistance of carbon/epoxy composites is necessary for the application of a composite material to tank structures. In this research, two types of carbon/epoxy composites with different matrix systems were tested to measure interlaminar shear strength (ILSS), one of the material properties to evaluate fiber-matrix interface adhesion indirectly. Short beam specimens were tested inside an environmental chamber at room temperature(RT) and at cryogenic temperature( - 150 $^{\circ}C$) respectively. Results showed that the matrix system with large amount of bisphenol-A and CTBN modified rubber had good performance at cryogenic temperature.

  • PDF

고온 복합재료의 경화 모니터링을 위한 유전센서의 개발 (Development of the Dielectric sensor for the Cure monitoring of the high temperature Composites)

  • 김일영;최진경;최진호;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.22-28
    • /
    • 2000
  • The fiber reinforced composite materials is widely used in aircraft, space structures and robot arms because of high specific strength and high specific modulus. The on-line cure monitoring during the cure process of the composite materials has become an important research area for the better quality and productivity. In this paper, the dielectric circuit of the wheatstone bridge type for measuring the dissipation factor was designed and manufactured. Also, the dielectric sensor for the cure monitoring of the high temperature composites was developed. The residual thermal stresses of the dielectric sensor were analyzed by the finite element method and its dielectric characteristics under high temperature were evaluated. The on-line cure monitoring of the BMI resin was performed using the wheatstone bridge type circuit and developed high-temperature dielectric sensor.

  • PDF

Thermal buckling analysis of shear deformable laminated orthotropic plates by differential quadrature

  • Moradi, S.;Mansouri, Mohammad Hassan
    • Steel and Composite Structures
    • /
    • 제12권2호
    • /
    • pp.129-147
    • /
    • 2012
  • In this paper, the thermal buckling analysis of rectangular composite laminated plates is investigated using the Differential Quadrature (DQ) method. The composite plate is subjected to a uniform temperature distribution and arbitrary boundary conditions. The analysis takes place in two stages. First, pre-buckling forces due to a temperature rise are determined by using a membrane solution. In the second stage, the critical temperature is predicted based on the first-order shear deformation theory. To verify the accuracy of the method, several case studies were used and the numerical results were compared with those of other published literatures. Moreover, the effects of several parameters such as aspect ratio, fiber orientation, modulus ratio, and various boundary conditions on the critical temperature were examined. The results confirm the efficiency and accuracy of the DQ method in dealing with this class of engineering problems.

Impact localization method for composite structures subjected to temperature fluctuations

  • Gorgin, Rahim;Wang, Ziping
    • Smart Structures and Systems
    • /
    • 제30권4호
    • /
    • pp.371-383
    • /
    • 2022
  • A novel impact localization method is presented based on impact induced elastic waves in sensorized composite structure subjected to temperature fluctuations. In real practices, environmental and operational conditions influence the acquired signals and consequently make the feature (particularly Time of Arrival (TOA)) extraction process, complicated and troublesome. To overcome this complication, a robust TOA estimation method is proposed based on the times in which the absolute amplitude of the signal reaches to a specific amplitude value. The presented method requires prior knowledge about the normalized wave velocity in different directions of propagation. To this aim, a finite element model of the plate was built in ABAQUS/CAE. The impact location is then highlighted by calculating an error value at different points of the structure. The efficiency of the developed impact localization technique is experimentally evaluated by dropping steel balls with different energies on a carbon fiber composite plate with different temperatures. It is demonstrated that the developed technique is able to localize impacts with different energies even in the presence of noise and temperature fluctuations.

복합재료 경화도 측정을 위한 유전 센서 (Dielectric sensor for cure monitoring of composite materials)

  • 김학성;권재욱;김진국;이대길;최진경;김일영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.219-223
    • /
    • 2001
  • The on-line cure monitoring during the cure process of composite materials is important for better quality and productivity. The dielectric sensor for cure monitoring consists of base film and electrodes. Because the characteristic of dielectric sensor for the on-line cure monitoring is dependent on the base material, width and number of electrode, etc, the dielectric sensor should be standardized. And the selection of base film material of sensor is very important. In order to prevent the measuring errors generated from the increase of environmental temperature, the base film material should have stable dielectric constant with respect to environmental temperature. In this study, the newly developed dielectric sensor for cure monitoring was designed and the dissipation factor which is function of degree of cure was measured using the sensor. The relationship between the dissipation factor and degree of cure with respect to environmental temperature was investigated.

  • PDF

실험법에 의한 지능성 복합체의 회복응력 측정에 관한 연구 (A Study on the Measurement for the Recovery Stress of Intelligent Composite by Experiment)

  • 황재석;이효재
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.515-523
    • /
    • 2003
  • Shape memory is physical phenomenon which a platically metal is restored to its original shape by a solid state phase change by heating. TiNi alloy the most effective material in the shape memory alloy(SMA). To study(measure) recovery stress of intelligent composite. Ti50-Ni50 shape memory matrix with prestrain SMA fiber. When SMA fiber of the intelligent composite is heated over austenite starting temperature(As) by electric heating. a recovery stress are generated. The recovery stress of the intelligent composite was measured by strain gage or photoelastic experiment. Measuring method of recovery stress by photoelastic experiment was developed in this research. It was certified that photoelastic experiment was more effective and more precise than strain gage method in the measurement of recovery stress.

TiC-Mo 공정복합재료의 고온 변형특성 (Deformation Properties of TiC-Mo Eutectic Composite at High Temperature)

  • 신순기
    • 한국재료학회지
    • /
    • 제23권10호
    • /
    • pp.568-573
    • /
    • 2013
  • The deformation properties of a TiC-Mo eutectic composite were investigated in a compression test at temperatures ranging from room temperature to 2053 K and at strain rates ranging from $3.9{\times}10^{-5}s^{-1}$ to $4.9{\times}10^{-3}s^{-1}$. It was found that this material shows excellent high-temperature strength as well as appreciable room-temperature toughness, suggesting that the material is a good candidate for high-temperature application as a structure material. At a low-temperature, high strength is observed. The deformation behavior is different among the three temperature ranges tested here, i.e., low, intermediate and high. At an intermediate temperature, no yield drop occurs, and from the beginning the work hardening level is high. At a high temperature, a yield drop occurs again, after which deformation proceeds with nearly constant stress. The temperature- and yield-stress-dependence of the strain is the strongest in this case among the three temperature ranges. The observed high-temperature deformation behavior suggests that the excellent high-temperature strength is due to the constraining of the deformation in the Mo phase by the thin TiC components, which is considerably stronger than bulk TiC. It is also concluded that the appreciable room-temperature toughness is ascribed to the frequent branching of crack paths as well as to the plastic deformation of the Mo phase.