• Title/Summary/Keyword: Composite ring

Search Result 174, Processing Time 0.029 seconds

Performability Analysis of Token Ring Networks using Hierarchical Modeling

  • Ro, Cheul-Woo;Park, Artem
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.88-93
    • /
    • 2009
  • It is important for communication networks to possess the capability to overcome failures and provide survivable services. We address modeling and analysis of performability affected by both performance and availability of system components for a token ring network under failure and repair conditions. Stochastic reward nets (SRN) is an extension of stochastic Petri nets and provides compact modeling facilities for system analysis. In this paper, hierarchical SRN modeling techniques are used to overcome state largeness problem. The upper level model is used to compute availability and the lower level model captures the performance. And Normalized Throughput Loss (NTL) is obtained for the composite ring network for each node failures occurrence as a performability measure. One of the key contributions of this paper constitutes the Petri nets modeling techniques instead of complicate numerical analysis of Markov chains and easy way of performability analysis for a token ring network under SRN reward concepts.

Polymerization Shrinkage Behavior Measured by Digital Image Correlation for Methacrylate-based and Silorane-based Composites During Dental Restoration (디지털 이미지 상관법을 이용한 Methacrylate기질과 Silorane기질 복합레진의 치아 수복 시 중합수축거동)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.125-132
    • /
    • 2020
  • The polymerization shrinkage behavior of dimethacrylate-based composite (Clearfil AP-X, Kuraray) and silorane-based composite (Filtek P90, 3M ESPE) used for dental composite restorations was measured using digital image correlation method. The stress distribution on the surface of specimen was calculated by finite element analysis with equivalent elastic modulus and was compared with the measured shrinkage distribution. Camera images were monitored by a CCD camera during and after the irradiation of light. As a result of the DIC analysis, a non-uniform shrinkage distribution was observed in both composite resins, and the resin core inside the ring specimen had free flowability, leading to in greater shrinkage strain than the resin/ring interfacial region. It was observed that as the distance from the center of the resin increased, the radial average shrinkage strain decreased. The radial average shrinkage strain during light irradiation occurred to be 33% for P90 and 57% for AP-X of the entire strain at the end of the test. The shrinkage behavior of P90 and AP-X was measured to be significantly different from each other during light irradiation. In the resin near the resin/ring interface, it was confirmed that the tensile strain rapidly formed to increase after light irradiation, causing a tensile stressed, interface weak.

Residual Stresses in Thick Fabric Composite Rings with Respect to Compaction (압착에 따른 원환체 형상의 두꺼운 직물 복합재 내부의 잔류응력)

  • Kim Jong Woon;Kim Hyoung Geun;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.139-142
    • /
    • 2004
  • The fabric composite rings for nozzle parts of solid rocket motors should be thick to endure high temperature and pressure of combustion gas. Since the thermal residual stresses developed during manufacturing of the axi-symmetric composite structures increase as the thickness increases and eventually induce failures during storage and operation, the estimation of the residual stresses is indispensable for design and manufacture of the thick composite nozzle parts. In this paper, thick fabric rings made of carbon fabric phenolic composites were fabricated in a hydroclave and in an autoclave using a multi-step pre-compaction process to minimize draping. The residual stresses distributed in the rings were measured by the radial-cut method and it was found that the compaction reduces the residual stresses in the composite ring.

  • PDF

Ring Hybrid Coupler with Compact Size and Wide Bandwidth (넓은 대역폭을 가지는 소형 링 하이브리드)

  • Kim, Ui-Jung;Kim, Seung-Hwan;Kim, Ell-Kou;Lee, Young-Soon;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.194-200
    • /
    • 2009
  • This paper introduces a ring hybrid coupler using shunt capacitors, high impedance lines and CRLH-TLs (Composite Right/Left-Handed Transmission Lines) with size reduction and bandwidth enhancement. The reduced method of line length uses to combine a short length high impedance line and shunt capacitors. Also, there is combined CRLH meta-material so as to obtain wide bandwidth of transmission line using nonlinear phase characteristic of CRLH-TL that consists of series capacitors and shunt inductors. The implemented ring hybrid coupler shows a novel design with compact size that is smaller than 10% and bandwidth is larger than 60% of conventional ring hybrid coupler.

  • PDF

Long-term Ring Deflection Prediction of GFRP Pipe in Cooling Water Intake for the Nuclear Power Plant (원전 냉각수 취수용 GFRP관의 장기관변형 예측)

  • Kim, Sun-Hee;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • Recently, underground pipes are utilized in various fields of applications such as sewer lines, drain lines, water mains, gas lines, telephone and electrical conduits, culverts, oil lines, etc. Most of pipes are installed for long-term purposes and they should be safely installed in consideration of installation conditions because there are unexpected various terrestrial loading conditions. In this paper, we present the result of investigation pertaining to the structural behavior of glass fiber reinforced thermosetting polymer plastic (GFRP) flexible pipes buried underground. The mechanical properties of the GFRP flexible pipes produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, ring deflection is measured by the field tests and the finite element analysis (FEA) is also conducted to simulate the structural behavior of GFRP pipes buried underground. From the field test results, we predicted long-term, up to 50 years, ring deflection of GFRP pipes buried underground based on the method suggested by the existing literature. It was found that the GFRP flexible pipe to be used for cooling water intake system in the nuclear power plant is appropriate because 5% ring deflection limitation for 50 years could be satisfied.

Effects of Split Position on the Performance of a Compact Broadband Printed Dipole Antenna with Split-Ring Resonators

  • Kedze, Kam Eucharist;Wang, Heesu;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.2
    • /
    • pp.115-121
    • /
    • 2019
  • This paper presents the effects of the position of the split of a split-ring resonator (SRR) on the performance of a composite broadband printed dipole antenna. The antenna is made of two printed dipole arms enclosed by two rectangular and identically printed SRRs. One dipole arm and the SRR are printed on the top side of the substrate, while the other dipole arm and SRR are printed on the bottom side of the same substrate. By changing the position of the split on the SRR, different antenna characteristic values are obtained, namely, for impedance bandwidth and radiation patterns. The split position is thus a critical parameter in antenna design, because it influences the antenna's major performance immensely. Different split positions and their consequences for antenna performance are demonstrated and discussed. The antenna generates linearly polarized radiations, and it is computationally characterized for broadband characteristics. The optimized compact antenna has overall dimensions of 9.6 mm × 74.4 mm × 0.508 mm (0.06λ × 0.469λ × 0.0032λ at 1.895 GHz) with a measured fractional bandwidth of 60.31% (1.32 to 2.46 GHz for |S11| <-10 dB) and a radiation efficiency of >88%.

Numerical Simulations on the O-ring Extrusion in Automotive Engines (자동차 엔진에서 O-링의 압출거동에 관한 수치적 연구)

  • 이일권;김청균
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.297-303
    • /
    • 1999
  • O-rings in automotive engines are important components such as a coolant pipe, engine oil circulating lines and fuel injector for sealing that makes efficient performance of the engine. Life cycle of O-rings is effected in environments of the O-ring seal, like that applied pressure, working temperature, precompressed ratio and materials. It is related in extrusion, expansion and fatigue failure of O-rings. In this paper, an pressurized, compressed elastomeric O-ring inserted into a rectangular groove is analysed numerically using the nonlinear finite element method. The calculated FEM results showed that extrusion ratio and contact stress are strongly related to the gap clearance and edge radius of the groove.

A Study on the Friction and Wear Property of Composite Piston Ring for Oil Free Air Compressor (무급유 공기압축기용 복합재료 피스턴링의 마찰마모 특성에 관한 연구)

  • Kim, Y.Z.;Jung, H.D.;Kim, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.766-771
    • /
    • 2000
  • This study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polyimide composites. At the PTFE and polyimide alone mixture specimens, PTFE80%-polyimide20%, which shows the lowest men friction coefficient and specific wear rate at 0.94m/s sliding speed. At each of carbon, copper and oxide lopper mixed with PTFE80%-polyimide20%. In case of copper10%, at 0.94m/s sliding speed, the mean friction coefficient shows 0.087, which is the lowest value in all specimens. In case of the specific wear rate, copper30% specimen shows the lowest value of $2.537E-5(mm^3/Nm)$ in all specimens.

  • PDF

Bidirectional Motion of the Metal/Ceramic Composit Structure Linear Ultrasonic Motor (금속/세라믹 복합구조 선형 초음파 모터의 양방향 운동)

  • Lee, Jae-Hyung;Park, Tae-Gone;Kim, Myung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.79-82
    • /
    • 2002
  • In this paper, a single phase driven piezoelectric motor design was presented for linear motion. Two metal/ceramic composite actuators, a piezoelectric ring which was bonded to a metal endcap from one side, were used as the active elements of this motor. The motor was composed of a piezoelectric ceramic, a metal ring which has 4 arms, and a guider. Motors with 30.0[mm] and 35.0[mm] diameter were studied by finite element analysis and experiments. As results, the maximum speed of motor was obtained at resonant frequency. When the applied voltage of the motor increased, the speed was increased. Also, bidirectional motion of the motor was achieved by combining two motors which have different resonant frequency.

  • PDF

A Study on the Shear Impact Characteristics of Adhesively Bonded Tubular Joints (접착 조인트의 전단 충격특성에 관한 연구)

  • Kim, Yong-Ha;Park, Sang-Kun;Kim, Dong-Ok;Ryu, Yong-Moon;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2012
  • The structural adhesives have the advantage of improving automobile performances and are being applied to joining light weight materials like aluminium and composite. In order to characterize the impact behavior of structural adhesive, instrumented impact tests were performed with respect to pin-ring adhesively bonded joint specimens. Also dynamic FE analysis was carried out using LS-DYNA to compare the results with experiments.