• Title/Summary/Keyword: Composite reinforcement

Search Result 942, Processing Time 0.029 seconds

Braided composite rods: Innovative fibrous materials for geotechnical applications

  • Fangueiro, Raul;Rana, Sohel;Gomes Correia, A.
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • In this paper, a novel fibrous material known as axially reinforced braided composite rods (BCRs) have been developed for reinforcement of soils. These innovative materials consist of an axial reinforcement system, comprised of longitudinally oriented core fibres, which is responsible for mechanical performance and, a braided cover, which gives a ribbed surface texture for better interfacial interactions with soils. BCRs were produced using both thermosetting (unsaturated polyester) and thermoplastic (polypropylene) matrices and synthetic (carbon, glass, HT polyethylene), as well as natural (sisal) core fibres. BCRs were characterized for tensile properties and the influence of core fibres was studied. Moreover, BCRs containing carbon fibre in the core composition were characterized for piezoresistivity and strain sensing properties under flexural deformation. According to the experimental results, the developed braided composites showed tailorable and wide range of mechanical properties, depending on the core fibres and exhibited very good strain sensing behavior.

The Mechanical Property by Fiber Orientation Distributions in Fiber-Reinforced Polymeric Composites (섬유강화 고분자 복합재료에서 섬유배향상태에 따른 기계적 성질)

  • Lee, Dong-Gi;Sim, Jae-Ki;Han, Gil-Young;Kim, Hyuk;Kim, Jin-Woo;Lee, Jung-Ju
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.202-205
    • /
    • 2003
  • Investigated whether fiber orientation situation of fiber reinforcement macromolecule composition board and the fiber inclusion rate are perpendicular and horizontal direction tensile strength and some correlation. Fiber orientation situation of tensile strength of 0 direction of composition board increased changelessly by aeolotropy in isotropy. Tensile strength of 90 direction that is isotropy and tensile strength of 0 direction that is aeolotropy agreed almost. Get into aeolotropy, the reinforcement rate of fiber decreased. When load interacts for width direction of reinforcement.

  • PDF

Torsion Rigidity of Composite Material Cmbody for Low Floor Bus (한국형 저상버스 복합소재 차체에 대한 비틀림 강성 평가)

  • Leem, Song-Gyu;Kim, Yeon-Su;Mok, Jai-Kyun;Jang, Se-Ky;Cho, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.548-553
    • /
    • 2008
  • Low Floor buses have no steps to get on or get off the main cabin to provide the old and the handicapped with easy access. The car body for the low floor bus was designed to consider Korean physical standard, passenger capacity (standee, seated, handicapped), arrangement of vehicle components, and bus law or regulations. It was designed as an one body, without any reinforcement armature, which has light-weight sandwich constructions with glass epoxy skins, aluminum honeycomb cores and inner-frames. In this paper, torsion rigidity of the designed car body was evaluated and compared with that of a car body with reinforcement armatures in the cabin. Finite element method verified that the designed car body without reinforcement armatures could satisfy requirements of torsion rigidity.

  • PDF

Fatigue Crack Growth Behavior of Short fiber/Particle Hybrid Metal Matrix Composites (단섬유/입자 혼합 금속복합재료의 피로균열진전 거동)

  • Oh K.H.;Jang J. H.;Han K. S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.219-222
    • /
    • 2004
  • The effects of short fiber and particle hybrid reinforcement on fatigue crack propagation behaviors in aluminum matrix composites have been investigated. Single and hybrid reinforced 6061 aluminum containing same 20 $Al_2O_3\;volume\%$ with four different constituent ratios of short fibers and particles were prepared by squeeze casting method and tested to check the near-threshold and stable crack growth behavior. The fatigue threshold of the composites increased with portion of particle contents and showed the improved crack resistance especially in low stress intensity range. Addition of particle instead of short fiber also increased fracture toughness due to increase of inter-reinforcement distance. These increase in both fatigue threshold and fracture toughness eventually affected the fatigue crack growth behavior such that the crack growth curve shift low to high stress intensity factor value. Overall experimental results were shown that particle reinforcement was enhanced the fatigue crack resistance over the whole stress intensity factor range.

  • PDF

A study on bending strength of reinforced concrete filled steel tubular beam

  • Xiamuxi, Alifujiang;Hasegawa, Akira;Tuohuti, Akenjiang
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.639-655
    • /
    • 2014
  • The mechanical characteristic of reinforced concrete filled steel tubular (RCFT) structures are differed from that of concrete filled tubular steel (CFT) structures because the reinforcement in RCFT largely affects the performance of core concrete such as ductility, strength and toughness, and hence the performance of RCFT should be evaluated differently from CFT. To examine the effect axial reinforcement on bending performance, an investigation on RCFT beams with varying levels of axial reinforcement is performed by the means of numerical parametric study. According to the numerical simulation results with 13 different ratios of axial reinforcement, it is concluded that the reinforcement has obvious effect on bending capacity, and the neutral axis of RCFT is different from CFT, and an evaluation equation in which the effect of axial reinforcement is considered for ultimate bending strength of RCFT is proposed.

Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle

  • Boulal, Ammar;Bensattalah, Tayeb;Karas, Abdelkader;Zidour, Mohamed;Heireche, Houari;Adda Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.209-223
    • /
    • 2020
  • This paper investigates the buckling behavior of carbon nanotube-reinforced composite plates supported by Kerr foundation model. In this foundation elastic of Kerr consisting of two spring layers interconnected by a shearing layer. The plates are reinforced by single-walled carbon nanotubes with four types of distributions of uniaxially aligned reinforcement material. The analytical equations are derived and the exact solutions for buckling analyses of such type's plates are obtained. The mathematical models provided, and the present solutions are numerically validated by comparison with some available results in the literature. Effect of various reinforced plates parameters such as aspect ratios, volume fraction, types of reinforcement, parameters constant factors of Kerr foundation and plate thickness on the buckling analyses of carbon nanotube-reinforced composite plates are studied and discussed.

Mechanical Properties of 2024/(Al2O3.SiC)p Composite Reinforced with Al2O3.SiC Particle Prepared by SHS Process (자전연소법으로 제조한 Al2O3.SiC 입자로 보강된2024/(Al2O3.SiC)p 복합재료의 기계적특성)

  • 맹덕영
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • Al2O3$.$SiC particle was prepared was prepared by the self-propagting high temperature sYthesis(SHS) process from a mixture of SiO2, Al and C powders, The fabricated Al2O3$.$SiC particle was applied to 2024Al/(Al2O3$.$SiC)pcomposite as a reinforcement. Aluminum matix composites were fabricares by the powder extrusion method using the synthesized Al2O3$.$SiC particle and commercial 2024Al powder. Theoptimum preparation conditions for Al2O3$.$SiC partticle by SHS process were described. The influence of the Al2O3$.$SiC voiume fraction on the mechanical was composite was also discussed. Despite adiabatic temperature was about 2367K, SHs reaction was completed not by itself, but by using pre-heating. Mean particle size of final particle synthesized was 0.73 ${\mu}$m and most of the particle was smaller than 2${\mu}$m. Elastic modulus and tensile strength of the composite increased with increase the volume fraction of reinforcement but, tensile strength depreciated at 30 vol% of reinforcement.

  • PDF

Fibre reinforcement in a structurally compromised endodontically treated molar: a case report

  • Soares, Renita;Ataide, Ida de Noronha de;Fernandes, Marina;Lambor, Rajan
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.143-147
    • /
    • 2016
  • The reconstruction of structurally compromised posterior teeth is a rather challenging procedure. The tendency of endodontically treated teeth (ETT) to fracture is considerably higher than vital teeth. Although posts and core build-ups followed by conventional crowns have been generally employed for the purpose of reconstruction, this procedure entails sacrificing a considerable amount of residual sound enamel and dentin. This has drawn the attention of researchers to fibre reinforcement. Fibrereinforced composite (FRC), designed to replace dentin, enables the biomimetic restoration of teeth. Besides improving the strength of the restoration, the incorporation of glass fibres into composite resins leads to favorable fracture patterns because the fibre layer acts as a stress breaker and stops crack propagation. The following case report presents a technique for reinforcing a badly broken-down ETT with biomimetic materials and FRC. The proper utilization of FRC in structurally compromised teeth can be considered to be an economical and practical measure that may obviate the use of extensive prosthetic treatment.

Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression

  • Chen, B.L.;Wang, L.G.
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • Hollow steel-reinforced concrete-filled GFRP tubular member is a new kind of composite members. Firstly set the mold in the GFRP tube (non-bearing component), then set the longitudinal reinforcements with stirrups (steel reinforcement cage) between the GFRP tube and the mold, and filled the concrete between them. Through the axial compression test of the hollow steel-reinforced concrete-filled GFRP tubular member, the working mechanism and failure modes of composite members were obtained. Based on the experiment, when the load reached the ranges of $55-70%P_u$ ($P_u-ultimate$ load), white cracks appeared on the surface of the GFRP tubes of specimens. At that time, the confinement effects of the GFRP tubes on core concrete were obvious. Keep loading, the ranges of white cracks were expanding, and the confinement effects increased proportionally. In addition, the damages of specimens, which were accompanied with great noise, were marked by fiber breaking and resin cracking on the surface of GFRP tubes, also accompanied with concrete crushing. The bearing capacity of the axially compressed components increased with the increase of reinforcement ratio, and decreased with the increase of hollow ratio. When the reinforcement ratio was increased from 0 to 4.30%, the bearing capacity was increased by about 23%. When the diameter of hollow part was decreased from 55mm to 0, the bearing capacity was increased by about 32%.

Different strengthening designs and material properties on bending behavior of externally reinforced concrete slab

  • Najafi, Saeed;Borzoo, Shahin
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.3
    • /
    • pp.271-287
    • /
    • 2022
  • This study investigates the bending behavior of a composite concrete slab roof with different methods of externally strengthing using steel plates and carbon fiber reinforced polymer (CFRP) strips. First, the concrete slab model which was reinforced with CFRP strips on the bottom surface of it is validated using experimental data, and then, using numerical modeling, 7 different models of square-shaped composite slab roofs are developed in ABAQUS software using the finite element modeling. Developed models include steel rebar reinforced concrete slab with variable thickness of CFRP and steel plates. Considering the control sample which has no external reinforcement, a set of 8 different reinforcement states has been investigated. Each of these 8 states is examined with 6 different uncertainties in terms of the properties of the materials in the construction of concrete slabs, which make 48 numerical models. In all models loading process is continued until complete failure occurs. The results from numerical investigations showed using the steel plates as an executive method for strengthening, the bending capacity of reinforced concrete slabs is increased in the ultimate bearing capacity of the slab by about 1.69 to 2.48 times. Also using CFRP strips, the increases in ultimate bearing capacity of the slab were about 1.61 to 2.36 times in different models with different material uncertainties.