• Title/Summary/Keyword: Composite ratio

Search Result 2,649, Processing Time 0.029 seconds

Rotation capacity of composite beam connected to RHS column, experimental test results

  • Eslami, Mohammadreza;Namba, Hisashi
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.141-159
    • /
    • 2016
  • Commonly in steel frames, steel beam and concrete slab are connected together by shear keys to work as a unit member which is called composite beam. When a composite beam is subjected to positive bending, flexural strength and stiffness of the beam can be increased due to "composite action". At the same time despite these advantages, composite action increases the strain at the beam bottom flange and it might affect beam plastic rotation capacity. This paper presents results of study on the rotation capacity of composite beam connected to Rectangular Hollow Section (RHS) column in the steel moment resisting frame buildings. Due to out-of-plane deformation of column flange, moment transfer efficiency of web connection is reduced and this results in reduction of beam plastic rotation capacity. In order to investigate the effects of width-to-thickness ratio (B/t) of RHS column on the rotation capacity of composite beam, cyclic loading tests were conducted on three full scale beam-to-column subassemblies. Detailed study on the different steel beam damages and concrete slab damages are presented. Experimental data showed the importance of this parameter of RHS column on the seismic behavior of composite beams. It is found that occurrence of severe concrete bearing crush at the face of RHS column of specimen with smaller width-to-thickness ratio resulted in considerable reduction on the rate of strain increase in the bottom flange. This behavior resulted in considerable improvement of rotation capacity of this specimen compared with composite and even bare steel beam connected to the RHS column with larger width-to-thickness ratio.

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

Effect of Diaphragm Ratio by Load Condition and Behavior in Composite Structures of Sandwich System (샌드위치식 복합구조체에서 하중조건.거동특성에 따른 격벽간격비의 영향)

  • 정연주;정광회;김병석;박성수;황일선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.297-302
    • /
    • 2000
  • This paper presents the effect of diaphragm spacing ratio(depth to span) on behavior and capacity of composite steel-concrete structures of sandwich system. Numerical analysis has been performed variety diaphragm ratio, behavior and load condition. As a results of this study, in case of shear behavior and concentrated load, the capacity of structure such as yielding and ultimate load improve according to diaphragm ratio because of concrete confining effect by steel plate and stress redistribution by diaphragm. But in case of bending behavior or uniform load, it proved that diaphragm ratio don't influence on behavior and capacity of composite structures of sandwich system.

  • PDF

Flowing and Strength Properties of Ternary System Inorganic Composite Mortar according to the Change of Replacement Ratio of Recycled Sand (순환잔골재 치환율 변화에 따른 3성분계 무기결합재 모르타르의 유동 및 강도특성)

  • Bae, Sang-Woo;Park, Jong-Pil;Kim, Gyu-Yong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.99-100
    • /
    • 2012
  • This study tried to present the appropriate replacement ratio of the recycled sand through the properties of the ternary system inorganic composite mortar according to replacement ratio change of the recycled sand about the natural sand through test verification. The flowing and compressive strength was degraded as the replacement ratio of the experimental result recycled sand increased. The appropriate replacement ratio of the recycled sand according to it was shown up less than 15%.

  • PDF

A Study on Solid Rocket Motor with High L/D Ratio Applied Composite Propellant (Composite 추진제 적용 high L/D ratio 고체추진기관 연구)

  • Kim, Jin-Yong;Lee, Won-Bok;Suh, Hyuk;Rhee, Young-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.555-558
    • /
    • 2010
  • This paper presents a design of solid rocket motor with high length to diameter applied composite propellant. Solid rocket motor with high L/D ratio can be generated erosive burning and combustion instability on longitudinal mode. Especially, Erosive burning can effectively prolong the initial pressure spike in some star grain motors. That is, the study shows design of grain, internal ballistics and structural analysis in order to perform system requirements.

  • PDF

Experimental Investigation of Mechanical and Tribological Characteristics of Al 2024 Matrix Composite Reinforced by Yttrium Oxide Particles

  • Hamada, Mohanad Lateef;Alwan, Ghazwan Saud;Annaz, Abdulkader Ahmed;Irhayyim, Saif Sabah;Hammood, Hashim Shukur
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.339-344
    • /
    • 2021
  • Composite materials offer distinct and unique properties that are not naturally inherited in the individual materials that make them. One of the most attractive composites to manufacture is the aluminum alloy matrix composite, because it usually combines easiness of availability, light weight, strength, and other favorable properties. In the current work, Powder Metallurgy Method (PMM) is used to prepare Al2024 matrix composites reinforced with different mixing ratios of yttrium oxide (Y2O3) particles. The tests performed on the composites include physical, mechanical, and tribological, as well as microstructure analysis via optical microscope. The results show that the experimental density slightly decreases while the porosity increases when the reinforcement ratio increases within the selected range of 0 ~ 20 wt%. Besides this, the yield strength, tensile strength, and Vickers hardness increase up to a 10 wt% Y2O3 ratio, after which they decline. Moreover, the wear results show that the composite follows the same paradigm for strength and hardness. It is concluded that this composite is ideal for application when higher strength is required from aluminum composites, as well as lighter weight up to certain values of Y2O3 ratio.

Resonance Characteristics of a 1-3 Piezoelectric Composite Transducer of Circular Arch Shape (원호형 1-3 압전 복합재 변환기의 공진 특성)

  • Kim, Dae-Seung;Kim, Jin-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.301-312
    • /
    • 2009
  • This paper presents a theoretical approach to calculate the resonant frequency of a thickness vibration mode in the radial direction for a 1-3 piezoelectric composite transducer of circular arch shape. For the composite transducer composed of a piezoelectric ceramic and a polymer, vibration parameters were derived according to the volume ratio of a ceramic, and a vibration characteristic equation was derived from the piezoelectric governing equations with adequate boundary conditions. The fundamental resonant frequencies were calculated numerically and verified by comparing them with those obtained from the finite element analysis and the experiment. The volume ratio and the thickness are more substantial than the curvature radius to determine the fundamental resonant characteristics, and the fundamental resonant frequency becomes higher for the larger volume ratio of the piezoelectric ceramic and for the smaller thickness.

Composite coating of Suspended Inert Particles in the Rotating Disk Electrode (회전원판 전극에서 비활성 현탁분체의 복합도금)

  • 박세용;김래현;김진성;최창균
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.2
    • /
    • pp.73-81
    • /
    • 1992
  • The composite coating of suspended inert particles $\alpha$-Al2O3 and copper from acid sulphate bath was investigated at the Rotating Disk Electrode. Effects of rotation speeds of electrode, physical properties of electrolyte, the size and concentration of suspended particles on the codeposition ratio of Al2O3 and the enhancement of mass transfer of copper ions were examined. Particularly, new experimental method for the measurement of the codeposition ratio was suggested and also the characteristics of the composite coating layer were measured by Rutherford Backscattering Spectrometry. Mass transfer of suspended particles system were increased up to 40% more than those of without suspended particles system. Optimum conditions of current density, hydrodynamics of RDE, and particles concentration showing maximum codeposition ratio were appeared in our experimental ranges. It was shown that the suspended inert particles were codeposited mainly near the surface of the composite coating layer.

  • PDF

Shear Strength of Steel Fiber Concrete - Plain Concrete Composite Beams (강섬유보강 콘크리트와 일반 콘크리트 합성보의 전단강도)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.501-510
    • /
    • 2015
  • Composite construction of precast concrete and cast-in-place concrete is currently used for the modular construction. In this case, the use of steel fiber reinforced concrete (SFRC) could be beneficial for precast concrete. However, the shear strength of such composite members (SFRC and cast-in-place concrete) is not clearly defined in current design codes. In the present study, steel fiber composite beam tests were conducted to evaluate the effect of steel fibers on the composite members. The test variables are the area ratio of SFRC and shear reinforcement ratio. The test results showed that when minimum horizontal shear reinforcement was used, the shear strength of composite beams increased in proportion to the area ratio of steel fiber reinforced concrete. However, because of the steel fiber, the composite beams were susceptible to horizontal shear failure. Thus, minimum horizontal shear reinforcement is required for SFRC composite beams.

Analysis of higher order composite beams by exact and finite element methods

  • He, Guang-Hui;Yang, Xiao
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.625-644
    • /
    • 2015
  • In this paper, a two-layer partial interaction composite beams model considering the higher order shear deformation of sub-elements is built. Then, the governing differential equations and boundary conditions for static analysis of linear elastic higher order composite beams are formulated by means of principle of minimum potential energy. Subsequently, analytical solutions for cantilever composite beams subjected to uniform load are presented by Laplace transform technique. As a comparison, FEM for this problem is also developed, and the results of the proposed FE program are in good agreement with the analytical ones which demonstrates the reliability of the presented exact and finite element methods. Finally, parametric studies are performed to investigate the influences of parameters including rigidity of shear connectors, ratio of shear modulus and slenderness ratio, on deflections of cantilever composite beams, internal forces and stresses. It is revealed that the interfacial slip has a major effect on the deflection, the distribution of internal forces and the stresses.