• Title/Summary/Keyword: Composite programming

Search Result 79, Processing Time 0.027 seconds

Cost optimization of composite floor trusses

  • Klansek, Uros;Silih, Simon;Kravanja, Stojan
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.435-457
    • /
    • 2006
  • The paper presents the cost optimization of composite floor trusses composed from a reinforced concrete slab of constant depth and steel trusses consisting of hot rolled channel sections. The optimization was performed by the nonlinear programming approach, NLP. Accordingly, a NLP optimization model for composite floor trusses was developed. An accurate objective function of the manufacturing material, power and labour costs was proposed to be defined for the optimization. Alongside the costs, the objective function also considers the fabrication times, and the electrical power and material consumption. Composite trusses were optimized according to Eurocode 4 for the conditions of both the ultimate and the serviceability limit states. A numerical example of the optimization of the composite truss system presented at the end of the paper demonstrates the applicability of the proposed approach.

A Study on Optimal Composition for Composite Solid Propellant under Multiple Criteria (다기준하(多基準下)의 혼성고체추진제 최적조성(混成固體推進劑 最適組成)에 관한 연구(硏究))

  • Jeong, Byeong-Hui;Kim, Gi-Bae
    • IE interfaces
    • /
    • v.1 no.1
    • /
    • pp.17-26
    • /
    • 1988
  • This paper describes a nonlinear goal programming approach to the optimal composition of composite solid propellant taking multiple characteristics into consideration synchronously. The nonlinear goal programming model with response functions, restrictions and the optimal value of each characteristic is developed using Scheffe's "Experiments with mixtures" and preference weighting system. Objective functions are described based on process, performance and assurance characteristics. The systematic approach to optimal composition in this study is proved efficient through a CTPB-AL-AP propellant which is one of composite solid propellant systems.

  • PDF

Fuzzy multi-objective optimization of the laminated composite beam (복합재 적층 보의 퍼지 다목적 최적설계)

  • 이강희;구만회;이종호;홍영기;우호길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.143-148
    • /
    • 2000
  • In this article, we presents multi-objective design optimization of laminated composite beam using Fuzzy programming method. At first, the two design objectives are minimizing the structural weight and maximizing the buckling load respectively. Fuzzy multi-optimization problem can be formulated based on results of single optimizations. Due to different relative importance of design objectives, membership functions are constructed by adding exponential parameters for different objective's weights. Finite element analysis of composite beam for buckling behavior are carried by Natural mode method proposed by J.Argyris and computational time of analysis can be reduced. With this scheme, a designer can conveniently obtain a compromise optimal solution of a multi-objective optimization problem only by providing some exponential parameters corresponding to the importance of the objective functions.

  • PDF

Optimal design of hybrid laminated composite plates (혼합 적층 복합 재료판의 최적설계)

  • 이영신;이열화;나문수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1391-1407
    • /
    • 1990
  • In this paper, optimization procedures are presented considering the static and dynamic constraints for laminated composite plate and hybrid laminated composite plate subject to concentrated load on center of the plates. Design variables for this problem are ply angle or ply thickness. Deflection, natural frequency and specific damping capacity are considered as constraints. Using a recursive linear programming method, the nonlinear optimization problems are solved. By introducing the design scaling factor, the number of iterations is reduced significantly. Composite plates could be designed optimally combined with FEM analysis under various conditions. In the optimization procedure, verification for both analysis and design of the laminated composite plates are compared with the results of the others. Various design results are presented for the laminated composite plates and hybrid laminated composite plates.

Design models for predicting shear resistance of studs in solid concrete slabs based on symbolic regression with genetic programming

  • Degtyarev, Vitaliy V.;Hicks, Stephen J.;Hajjar, Jerome F.
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.293-309
    • /
    • 2022
  • Accurate design models for predicting the shear resistance of headed studs in solid concrete slabs are essential for obtaining economical and safe steel-concrete composite structures. In this study, symbolic regression with genetic programming (GPSR) was applied to experimental data to formulate new descriptive equations for predicting the shear resistance of studs in solid slabs using both normal and lightweight concrete. The obtained GPSR-based nominal resistance equations demonstrated good agreement with the test results. The equations indicate that the stud shear resistance is insensitive to the secant modulus of elasticity of concrete, which has been included in many international standards following the pioneering work of Ollgaard et al. In contrast, it increases when the stud height-to-diameter ratio increases, which is not reflected by the design models in the current international standards. The nominal resistance equations were subsequently refined for use in design from reliability analyses to ensure that the target reliability index required by the Eurocodes was achieved. Resistance factors for the developed equations were also determined following US design practice. The stud shear resistance predicted by the proposed models was compared with the predictions from 13 existing models. The accuracy of the developed models exceeds the accuracy of the existing equations. The proposed models produce predictions that can be used with confidence in design, while providing significantly higher stud resistances for certain combinations of variables than those computed with the existing equations given by many standards.

Fuzzy-GA Application for Allocation and Operation of Dispersed Generation Systems in Composite Distribution Systems (복합배전계통에서 분산형전원의 설치 및 운영을 위한 Fuzzy-GA 응용)

  • 김규호;이유정;이상봉;유석구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.584-592
    • /
    • 2003
  • This paper presents a fuzzy-GA method for the allocation and operation of dispersed generator systems(DGs) based on load model in composite distribution systems. Groups of each individual load model consist of residential, industrial, commercial, official and agricultural load. The problem formulation considers an objective to reduce power loss of distribution systems and the constraints such as the number or total capacity of DGs and the deviation of the bus voltage. The main idea of solving fuzzy goal programming is to transform the original objective function and constraints into the equivalent multi-objectives functions with fuzzy sets to evaluate their imprecise nature for the criterion of power loss minimization, the number or total capacity of DGs and the bus voltage deviation, and then solve the problem using genetic algorithm. The method proposed is applied to IEEE 12 bus and 33 bus test systems to demonstrate its effectiveness. .

Discrete Optimization of Unsymmetric Composite Laminates Using Linear Aproximation Method (선형 근사화방법을 이용한 비대칭 복합 적층평판의 이산최적화)

  • 이상근;구봉근;한상훈
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.255-263
    • /
    • 1997
  • The optimum design of most structural systems used in practice requires considering design variables as discrete quantities. The present paper shows that the linear approximation method is very effective as a tool for the discrete optimum designs of unsymmetric composite laminates. The formulated design problem is subjected to a multiple in-plane loading condition due to shear and axial forces, bending and twisting moments, which is controlled by maximum strain criterion for each of the plys of a composite laminate. As an initial approach, the process of continuous variable optimization by FDM is required only once in operating discrete optimization. The nonlinear discrete optimization problem that has the discrete and continuous variables is transformed into the mixed integer programming problem by SLDP. In numerical examples, the discrete optimum solutions for the unsymmetric composite laminates consisted of six plys according to rotated stacking sequence were found, and then compared the results with the nonlinear branch and bound method to verify the efficiency of present method.

  • PDF

MINLP optimization of a composite I beam floor system

  • Zula, Tomaz;Kravanja, Stojan;Klansek, Uros
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1163-1192
    • /
    • 2016
  • This paper presents the cost optimization of a composite I beam floor system, designed to be made from a reinforced concrete slab and steel I sections. The optimization was performed by the mixed-integer non-linear programming (MINLP) approach. For this purpose, a number of different optimization models were developed that enable different design possibilities such as welded or standard steel I sections, plastic or elastic cross-section resistances, and different positions of the neutral axes. An accurate economic objective function of the self-manufacturing costs was developed and subjected to design, resistance and deflection (in)equality constraints. Dimensioning constraints were defined in accordance with Eurocode 4. The Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm was applied together with a two-phase MINLP strategy. A numerical example of the optimization of a composite I beam floor system, as presented at the end of this paper, demonstrates the applicability of the proposed approach. The optimal result includes the minimal produced costs of the structure, the optimal concrete and steel strengths, and dimensions.

Fast Selection of Composite Web Services Based on Workflow Partition (워크플로우 분할에 기반한 복합 웹 서비스의 빠른 선택)

  • Jang, Jae-Ho;Shin, Dong-Hoon;Lee, Kyong-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.5
    • /
    • pp.431-446
    • /
    • 2007
  • Executable composite Web services are selected by binding a given abstract workflow with the specific Web services that satisfy given QoS requirements. Considering the rapidly increasing number of Web services and their highly dynamic QoS environment, the fast selection of composite services is important. This paper presents a method for quality driven comosite Web services selection based on a workflow partition strategy. The proposed method partitions an abstract workflow into two sub-workflows to decrease the number of candidate services that should be considered. The QoS requirement is also decomposed for each partitioned workflow. Since the decomposition of a QoS requirement is based on heuristics, the selection might fail to find composite Web services. To avoid such a failure, the tightness of a QoS requirement is defined and a workflow is determined to be partitioned according to the tightness. A mixed integer linear programming is utilized for the efficient service selection. Experimental results show that the success rate of partitioning is above 99%. Particularly, the proposed method performs faster and selects composite services whose qualities are not significantly different (less than 5%) from the optimal one.

COMBING EQUAL-LIFE MULTILEVEL INVESTMENTS USING FUZZY DYNAMIC PROGRAMMING

  • Kahraman, Cengiz;Ulukan, Ziya;Tolga, Ethem
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.347-351
    • /
    • 1998
  • Dynamic programming is applicable to any situation where items from several groups must be combined to form an entity, such as a composite investment or a transportation route connecting several districts. The most desirable entity is constructed in stages by forming sub-entities that are candidates for inclusion in the most desirable entity are retained, and all other sub-entities are discarded. In the paper, the fuzzy dynamic programming is applied to the situation where each investment in the set has the following characteristics : the amount to be invested has several possible values, and the rte of return varies with the amount invested. Each sum that may be invested represents a distinct level of investment , and the investment therefore has multiple levels. A numeric example constructing a combination of multilevel investments is given in the paper.

  • PDF