• Title/Summary/Keyword: Composite powders

Search Result 576, Processing Time 0.023 seconds

The Densification Properties of Distaloy AE-TiC Cermet by Spark Plasma Sintering (방전 플라즈마 소결에 의한 Distaloy AE-TiC 써멧의 치밀화 특성)

  • Cho, Ho-Jung;Ahn, In-Shup;Lee, Young-Hee;Park, Dong-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.230-237
    • /
    • 2007
  • The fabrication of Fe alloy-40 wt.%TiC composite materials using spark plasma sintering process after ball-milling was studied. Raw powders to fabricate Fe alloy-TiC composite were Fe alloy, $TiH_{2}$ and activated carbon. Fe alloy powder was Distaloy AE (4%Ni-1%Cu-0.5%Mo-0.01%C-bal.%Fe) made by Hoeganes company with better toughness and lower melting point. These powders were ball-milled in horizontal attrition ball mill at a ball-to-powder weight ratio of 30 : 1. After that, these mixture powders were sintered by using spark plasma sintering apparatus for 5 min at $1200-1275^{\circ}C$ in vacuum atmosphere under $10^{-3}$ torr. DistaloyAE-40 wt.%TiC composite was directly synthesized by dehydrogenation and carburization reaction during sintering process. The phase transformation of as-milled powders and sintered materials was confirmed using X-ray diffraction (XRD) and transmission electron microscope (TEM). The density and harness materials was measured in order to confirm the densification behavior. In case of DistaloyAE-40 wt.%TiC composite retained for 5 min at $1275^{\circ}C$, it has the relative density of about 96% through the influence of rapid densification and fine TiC particle reinforced Fe-based composites materials.

Effect of Drying Methods on the Production of Graphenes Oxide Powder Prepared by Chemical Exfoliation (화학적 박리법으로 제조된 산화그래핀 분말의 건조방법에 따른 물성 비교)

  • Rho, Sangkyun;Noh, Kyung-Hun;Eom, Sung-Hun;Hur, Seung Hyun;Lim, Hyung Mi
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.592-598
    • /
    • 2013
  • Graphene oxide powders prepared by two different drying processes, freeze drying and spray drying, were studied to compare the effect of the drying method on the physical properties of graphene oxide powder. The graphene oxide dispersion was prepared from graphite by chemical delamination with the aid of sulfuric acid and permanganic acid, and the dispersion was further washed and re-dispersed in a mixed solvent of water and isopropyl alcohol. A freeze drying method can feasibly minimize damage to the sample, but it requires a long process time. In contrast, spray drying is able to remove a solvent in a relatively short time, though this process requires exposure to a high temperature for a rapid evaporation of the solvent. The powders prepared by freeze drying and spray drying were characterized and compared by Raman spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and by an elemental analysis. The graphene oxide powders showed similar chemical compositions; however, the morphologies of the powders differed in that the graphene oxide prepared by spray drying had a winkled morphology and a higher apparent density compared to the powder prepared by freeze drying. The graphene oxide powders were reduced at $900^{\circ}C$ in an atmosphere of $N_2$. The effect of the drying process on the properties of the reduced graphene oxide was examined by SEM, TEM and Raman spectroscopy.

Fabrication of Ultrafine Tungsten-based Composite Powders by Novel Reduction Process (신공정에 의한 초미립 텅스텐계 복합분말 제조)

  • Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.338-342
    • /
    • 2012
  • A novel chemical method was evaluated to fabricate the ultrafine tungsten heavy alloy powders with bater-base solution made from the ammonium metatungstate (AMT), iron(II) chloride tetrahydrate ($FeCl_2{\cdot}4H_2O$), nickel(II) chloride hexahydrate ($NiCl_2{\cdot}6H_2O$) as source materials and the sodium tungstate dihydrate ($NaWO_4{\cdot}2H_2O$) as Cl-reductant. In the preparation of mixtures the amounts of the source components were chosen so as to obtain alloy of 93W-5Ni-2Fe composition(wt.%). The obtained powders were characterized by X-ray diffraction, XRF, field-emission scanning microscope (FESEM), and chemical composition was analyzed by EDX.

Wear Resistance Characteristics of Iron Weld Overlays by Composite Chromium Powders (복합 크롬 분말에 의한 철계 용접 오버레이의 내마모 특성)

  • 김종철;박경채;최창옥
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.506-511
    • /
    • 2001
  • Weld overlay has been developed to improve the property of material surface which is used in the severe environment. Weld overlay is the process which uses an arc heat and welds different composition of alloy on the substrate for the improvements of heat resistance and wear resistance. Weld overlay has a lot of advantages which are high hardness, good processing efficiency, easy controlling of layer thickness, good quality and low cost. In this study, weld overlay was performed by MAG welding on the base metal(SS400) with filler metal which contain composite powders(Cr+C+Mn+Mo+NbC) and solid wire(JIS-YGW11). Characterization of hardness and wear resistance were analyzed by EDS, EPMA, XRD and observations of microstructure were performed to investigate characteristics of overlays. The experimental results of overlaid specimens manufactured with Cr+C+Mn+Mo+NbC powders were obtained as fellows. ${\alpha}-phase$, M(Fe, Cr)3C and NbC of overlays were increased with decreasing the wire feed rates and increasing powder feed rates. Also the hardness of overlays were increased and the specific wear were decreased.

  • PDF

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

A Study on the Microstructures and Properties of $Al-SiC)_p$ Metal Matrix Composites Fabricated by Spray Forming Process (분무성형법에 의해 제조된 $Al-SiC)_p$ 금속기 복합재료의 미세조직과 성질에 관한 연구)

  • 김춘근
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.42-51
    • /
    • 1994
  • 6061Al-SiCP metal matrix composite materials(MMCs) were fabricated by injecting SiCP particles directly into the atomized spray. The main attraction of this technique is the rapid fabrication of semi-finished, composite products in a combined atomization, particulate injection(10 $\mu\textrm{m}$, 40 $\mu\textrm{m}$, SiCP) and deposition operation. Conclusions obtained are as follows; The microstructure of the unreinforced spray formed 6061Al alloy consisted of relatively fine(50 $\mu\textrm{m}$) equiaxed grains. By comparision, the microstructure of the I/M materials was segregated and consisted of relatively coarse(150 $\mu\textrm{m}$) grains. The probability of clustering of SiCP particles in co-sprayed metal matrix composites increased it ceramic particle size(SiCP) was reduced and the volume fraction was held constant. Analysis of overspray powders collected from the spray atomization and deposition experiments indicated that morphology of powders were nearly spherical and degree of powders sphercity was deviated due to composite with SiCp particles. Interfacial bonding between matrix and ceramics was improved by heat treatment and addition of alloying elements(Mg). Maximum hardness values [Hv: 165 kg/mm2 for Al-10 $\mu\textrm{m}$ SiCp Hv--159 kg/mm2 for Al-40 $\mu\textrm{m}$SiCp] were obtained through the solution heat treatment at $530^{\circ}C$ for 2 hrs and aging at $178^{\circ}C$, and there by the resistance were improved.

  • PDF

Thermal Sprayed AlSiMg/TiC Composite Coatings : Fabrication of Powder and Characteristics of Coatings (I) (AlSiMg/TiC 복합 용사 피막 : 분말제조 및 피막 특성(I))

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.98-104
    • /
    • 2000
  • Aluminum alloys are being employed in automobile parts as strive to reduce overall vehicle weight to meet demands for improved fuel economy and reduction in vehicle emissions. Al-based composites reinforced with ceramic ($Al_2O_3,\;SiC,\;TiC\;and\;B_4C$) applications in a variety of components in automotive engines, such as liners, where the tribological properties of the material are important. In this study, Al-base composites reinforced with TiC particle powders has been developed for producing plasma spray coatings. The composite plasma spray powders were prepared Al-13Si-3Mg(wt%) alloy with TiC(40, 60 and 80wt%) particles ($0.2~5{\mu}textrm{m}$) by drum type ball milling. The composite powders ($36~76{\mu}textrm{m}$) were sprayed with plasma torch. Plasma sprayed coatings were heat-treated at $500^{\circ}C$ for 3 hours. The wear resistances of the plasma sprayed coatings were found to decrease with increasing TiC content and improved with heat treatment. AlSiMg-40% TiC heat-treated coatings were showed the best wear resistance in this study.

  • PDF

Electrical properties of conducting polymer PTCR containing carbon powders (탄소분말을 함유한 도전성 고분자 PTCR의 전기적 특성)

  • Kim, Kyung-Jong;Lee, Jae-Won;Kim, Young-Hyeok;Kim, Sung-Hoon;Choi, Mun-Seok;Lee, Jae-Shin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.220-221
    • /
    • 2006
  • We investigated the electrical properties of polymer-carbon composite materials for temperature sensitive resistor applications. Cu/polymer/Cu sheets were fabricated by laminating low density polyethylene(LDPE) containing carbon powders. Weight ratio of carbon powder to LDPE was varied in a range of 0.9~2. With increasing the carbon concentration, the electrical resistance of the composite material was decreased from 0.75 to $0.08\;{\Omega}cm$. The composite layer showed a abrupt increase in the electrical resistance at $115^{\circ}C$ because of the softening of the polymer.

  • PDF

Fabrication of Nanocrystalline Co-Al2O3 from Mechanically Synthesized Powders by Rapid Sintering (기계적으로 합성한 분말로부터 급속 소결에 의한 나노 구조의 Co-Al2O3 복합재료 제조)

  • Park, Na-Ra;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.961-966
    • /
    • 2012
  • Nano-sized Co and $Al_2O_3$ powders were successfully synthesized from $3/4Co_3O_4$ and 2Al by high-energy ball milling. A dense nanocrystalline $2.25Co-Al_2O_3$ composite was consolidated from mechanically synthesized powders by the pulsed current activated sintering (PCAS) method within 2 min. Consolidation was accomplished under the combined effects of a pulsed current and mechanical pressure. A dense $2.25Co-Al_2O_3$ with relative density of up to 95% was produced under simultaneous application of a 80 MPa pressure and a pulsed current of 2800 A. The fracture toughness and hardness of the $2.25Co-Al_2O_3$ composite were $8MPa{\cdot}m^{1/2}$, $870kg/mm^2$, respectively.

A Study of UltraRne WC-l0wt.%Co Cemented Carbides Powders Properties Fabricated by direct Carburization (직접침탄법에 의해 제조된 초미립 WC-10wt. % Co 초경 합금 분말의 특성 연구)

  • 권대환
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.178-183
    • /
    • 1998
  • Ultrafine WC-10wt.%Co cemented carbides powders were synthesized by direct carburization. W-Co composite powders and carbon black powders were mixed by wet ball milling and dried. The mixed powders were heated to 800 $^{\circ}C$ with heating rate of 8.2$^{\circ}C$/min and held for various times in flowing $H_2$. For carbon addition of 140%, the carburization was completed by heating at 80$0^{\circ}C$ for 4 hours. The carburization time decreased with increasing amount of carbon and carburization was completed by heating at 800 $^{\circ}C$ for 2 hours with carbon addition of 150%. WC-10 wt%Co cemented carbides powders fabricated by direct carburization have nanoscale WC($\/leqq$100 nm) size.

  • PDF