• Title/Summary/Keyword: Composite of sandwich

Search Result 582, Processing Time 0.026 seconds

An Accurate and Efficient Analysis of Composite Plates Based on Enhanced First-order Shear Deformation Theory (개선된 일차전단변형이론을 이용한 복합재료 적층평판의 고정밀 해석)

  • Kim, Jun-Sik;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.407-418
    • /
    • 2006
  • In this paper, an efficient yet accurate stress analysis based on the first-order shear deformation theory (FSDT) is presented. The transverse shear strain energy is modified via the mixed variational theorem, so that the shear correction factors are automatically involved in the formulation. In the mixed variational formulation, the transverse stresses are taken to be functions subject to variations. The transverse shear stresses based on an efficient higher order plate theory (EHOPT, Cho and Parmerter, 1993) are utilized and modified, while the transverse normal stress is assumed to be the third-order polynomial of thickness coordinates, which satisfies both zero transverse shear stresses and prescribed surface fractions in top and bottom surfaces. On the other hand, the displacements are assumed to be those of the FSDT Resulting strain energy expressions are referred to as an EFSDTM3D that stands for an enhanced first-order shear deformation theory based on the mixed formulation for three dimensional elasticity, The developed EFSDTM3D preserves the computational advantage of the classical FSDT while allowing for important local through-the-thickness variations of displacements and stresses through the recovery procedure that is based on the least square minimization of in-plane stresses. Comparisons of displacements and stresses of both laminated and sandwich plates using the present theory are made with the classical FSDT, three-dimensional exact solutions, and available data in the literature.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

Study on Weight Reduction of Urban Transit Carbody Based on Material Changes and Structural Optimization (도시철도차량 차체의 경량화를 위한 소재 변경 및 구조체 최적화 연구)

  • Cho, Jeong Gil;Koo, Jeong Seo;Jung, Hyun Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1099-1107
    • /
    • 2013
  • This study proposes a weight reduction design for urban transit, specifically, a Korean EMU carbody made of aluminum extrusion profiles, according to size optimization and useful material changes. First, the thickness of the under-frame, side-panels, and end-panels were optimized by the size optimization process, and then, the weight of the Korean EMU carbody could be reduced to approximately 14.8%. Second, the under-frame of the optimized carbody was substituted with a frame-type structure made of SMA 570, and then, the weight of the hybrid-type carbody was 3.8% lighter than that of the initial K-EMU. Finally, the under-frame and the roof-panel were substituted with a composite material sandwich to obtain an ultralight hybrid-type carbody. The weight of the ultralight hybrid-type carbody was 30% lighter than that of the initial K-EMU. All the resulting carbody models satisfied the design regulations of the domestic Performance Test Standard for Electrical Multiple Unit.

Impact and Bending Characteristics of Dual Band Composite Antennas (복합 구조 이중대역 안테나의 충격 및 굽힘 특성)

  • Shin, Dong-Sik;Kim, Jin-Yul;Park, Wee-Sang;Hwang, Woon-Bong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.35-40
    • /
    • 2011
  • We have studied the impact and bending characteristics of a dual band antenna (1.575, 2.645 GHz) with composite sandwich construction. Mechanical performance of the antenna can be improved by reinforcing the antenna by sandwiching the planar antenna with layers of carbon fiber-reinforced plastic(CFRP) and glass fiber-reinforced plastic(GFRP) using an adhesive film. According to the ASTM D7137, ASTM C393 and MIL-STD401B, impact and bending test were performed and the S-parameters and gains of the antenna were measured in order to verify electrical and mechanical performance. The maximum contact load and the bending load of the antenna are 4 kN and 400 N and gains of the antenna are 6 dBi and 4.6 dBi in the GPS and DMB bands, respectively. The proposed antenna structure can be applied to surfaces of vehicles.

A Study on Tensile Properties of Laminated Nanocomposite Fabricated by Selective Dip-Coating of Carbon Nanotubes (탄소나노튜브의 선택적 딥코팅을 이용해 제작된 적층 복합재료의 인장 물성에 대한 연구)

  • Kang Tae-June;Kim Dong-Iel;Huh Yong-Hak;Kim Yong-Hyup
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 2006
  • Carbon nanotubes reinforced copper matrix laminated nanocomposites were developed and the mechanical properties were evaluated by using micro-tensile testing system. Sandwich-type laminated structure constituted with carbon nanotube layers as a reinforcement and electroplated copper matrix were fabricated by a new processing approach based on selective dip-coating of carbon nanotubes. The mechanical properties of nanocomposites were improved due to an enhanced load sharing capacity of carbon nanotubes homogeneously distributed within the in-plane direction, as well as a bridging effect of carbon nanotubes along the out-of-plane direction between the upper and lower matrices. The universality of the layering approach is applicable to a wide range of functional materials, and here we demonstrate its potential use in reinforcing composite materials.

Design Improvement on Wind Turbine Blade of Medium Scale HAWT by Considering IEC 1400-1 Specification (IEC1400-1 규격을 고려한 중형 수평축 풍력발전용 회전날개의 설계개선 연구)

  • 공창덕;정석훈;장병섭;방조혁
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.29-37
    • /
    • 2000
  • Because the previous design procedure for the composite wind turbine blade structure using trial and error method takes long time, a improved design procedure by using the program based on classical laminate theory was proposed to reduce the inefficient element. According to the improved design procedure, limitation of strains, stresses and displacements specified by international standard specification IEC1400-1 for the composite wind turbine blade were applied to sizing the structural configuration by using the rule of mixture and the principal stress design technique with a simplified turbine blade. Structural safety for strength and buckling stability was confirmed by the developed analysis program based on the laminate theory to minimize the design procedure. After modifying the preliminary design result with additional structural components such as skin, foam sandwich and mounting joints, stresses, strains, displacements, natural frequency, buckling load and fatigue life were analyzed by the finite element method. Finally these results were confirmed by comparing with IEC1400-1 specification.

  • PDF

Monitoring and control of multiple fraction laws with ring based composite structure

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Naeem, Muhammad Nawaz;Taj, Muhammad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.129-138
    • /
    • 2021
  • In present article, utilizing the Love shell theory with volume fraction laws for the cylindrical shells vibrations provides a governing equation for the distribution of material composition of material. Isotopic materials are the constituents of these rings. The position of a ring support has been taken along the radial direction. The Rayleigh-Ritz method with three different fraction laws gives birth to the shell frequency equation. Moreover, the effect of height- and length-to-radius ratio and angular speed is investigated. The results are depicted for circumferential wave number, length- and height-radius ratios with three laws. It is found that the backward and forward frequencies of exponential fraction law are sandwich between polynomial and trigonometric laws. It is examined that the backward and forward frequencies increase and decrease on increasing the ratio of height- and length-to-radius ratio. As the position of ring is enhanced for clamped simply supported and simply supported-simply supported boundary conditions, the frequencies go up. At mid-point, all the frequencies are higher and after that the frequencies decreases. The frequencies are same at initial and final stage and rust itself a bell shape. The shell is stabilized by ring supports to increase the stiffness and strength. Comparison is made for non-rotating and rotating cylindrical shell for the efficiency of the model. The results generated by computer software MATLAB.

Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system

  • Zhou, Changlin;Zhao, Yi;Zhang, Ji;Fang, Yuan;Habibi, Mostafa
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.295-307
    • /
    • 2020
  • The vibrational characteristics of Multi-Phase Nanocomposite (MPC) reinforced annular/circular plate under initially stresses are presented using the state-space formulation based on three-dimensional elasticity theory (3D-elasticity theory) and Differential Quadrature Method (DQM). The MPC reinforced annular/circular plate is under initial lateral stress and composed of multilayers with Carbon Nanotubes (CNTs) uniformly dispersed in each layer, but its properties change layer-by-layer along the thickness direction. The State-Space based Differential Quadrature Method (SS-DQM) is presented to examine the frequency behavior of the current structure. Halpin-Tsai equations and fiber micromechanics are used in the hierarchy to predict the bulk material properties of the multi-scale composite. A singular point is investigated for modeling the circular plate. The CNTs are supposed to be randomly oriented and uniformly distributed through the matrix of epoxy resin. Afterward, a parametric study is done to present the effects of various types of sandwich circular/annular plates on frequency characteristics of the MPC reinforced annular/circular plate using 3D-elasticity theory.

Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution

  • Cao, Yan;Musharavati, Farayi;Baharom, Shahrizan;Talebizadehsardari, Pouyan;Sebaey, Tamer A.;Eyvazian, Arameh;Zain, Azlan Mohd
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.253-258
    • /
    • 2020
  • Vibration response in a sandwich plate with a nanocompiste core covered by magnetic layer is presented. The core is armed by functionalyy graded-carbon nanotubes (FG-CNTs) where the Mori-Tanaka law is utilized assuming agglomeration effects. The structure plate is located on elastic medium simulated by Pasternak model. The governing equations are derived based on Mindlin theory and Hamilton's principle. Utilizing diffrential quadrature method (DQM), the frequency of the structure is calculated and the effects of magnetic layer, volume percent and agglomeration of CNTs, elastic medium and geometrical parameters of structure are shown on the frequency of system. Results indicate that with considering magnetic layer, the frequency of structure is increased.

Influence of Chemical composition of Ethylene-Vinyl Acetate Copolymers on Impact Noise Damping of Composites (에틸렌-초산비닐 공중합체의 공중합 조성이 복합체의 충격음 흡수성능에 미치는 영향)

  • 이현종
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.55-61
    • /
    • 1999
  • This study was carried out to investigate the influence of viscoelastic properties(or chemical composition) of a series of ethylen-viny1 acetate copolymers on impact noise and vibration damping of wood/polymer/wood sandwich composites. The impact noise and vibration damping of composites were very sensitive to the state of molecular motion of polymer. The noise and vibration damping of composites were maximum when the polymer was under the glass transition(vinylacetate 55~75%) at the test-temperature, and minimum rubbery state(vinyl-acetate 47~20%) or glassy state(vinylacetate 100~87%). The polymer under glass transition reduced the impact noise by 6~12 dB.

  • PDF