• 제목/요약/키워드: Composite of sandwich

검색결과 582건 처리시간 0.028초

Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Supports II

  • Kim, Duk-hyun;Han, Bong-Koo;Lee, Jung-Ho;Park, Ji-Hyun
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.220-223
    • /
    • 2000
  • A method of calculating the natural frequency corresponding to the modes of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control The concrete slab is considered as a special orthotropic plate. The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.

  • PDF

복합적층 하니콤 코어형 샌드위치 판무구조물의 진동특성을 고려한 최적설계 (Optimum Design of the Laminated Composite Sandwich Plate Structure of Honeycomb Core considering Vibration Characteristics)

  • 서진;홍도관;안찬우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.710-715
    • /
    • 1997
  • This paper deals with the analysis of the optimum value of honeycomb core considering variable design parameter. As thickness and height of core rises in design parameter, natural frequency of laminated composite plate increases. The angle-phy has the maximum value when the plate of honeycomb core join to opposite direction. This paper shows that the natural frequency of CFRP was higher than that of GFRP and mode shapes were various at angle-ply.

  • PDF

다층 프리폼에서의 방사형 유동진행 (Radial Flow Advance in Multi-layered Preforms)

  • 신국승;송영석;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.155-158
    • /
    • 2004
  • In resin transfer molding, the preform similar to product shape is placed into a mold cavity. Rapid flow front without void formation is important for the composites processing. Multi-layered preform of sandwich is selected. Experiments is carried out using redial flow. An analytical modeling is performed and compared with experimental results. Accurate prediction of flow advance in the preform is of use for reducing the time consumption in the process and enhancing product properties of the final part.

  • PDF

고인성 섬유보강 시멘트 복합재료의 복합구성에 의한 휨 특성 (Bending Property of Composited Ductile Fiber Reinforced Cementitious Composite, DFRCC)

  • 김규용;손유신;양일승;후쿠야마히로시;윤현도;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.367-372
    • /
    • 2003
  • Fiber Reinforced Cementitious Composite, DFRCC has strain hardening property with multiple crack in failed of compressive, tensile, bending force, concrete is not so that. But DFRCC could not use to the building element for which has not structural stiffness only has ductile property. DFRCC is used for repair only in recently. In that reason, we considered the concrete of light weight concrete, porous concrete, mortar complex with DFRCC. and DFRCC reinforced by fiber net, steel bar. In this study, results of experiment on complex method of concrete and DFRC were shown as follows; The complex methods of concrete lay on DFRCC, sandwich layer composition were effective for bending force depending on section size each layer, and reinforce DFRCC by fiber net, steel bar was effective method also.

  • PDF

한국형 저상버스 복합소재 차체에 대한 비틀림 강성 평가 (Torsion Rigidity of Composite Material Cmbody for Low Floor Bus)

  • 임송규;김연수;목재균;장세기;조세현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.548-553
    • /
    • 2008
  • Low Floor buses have no steps to get on or get off the main cabin to provide the old and the handicapped with easy access. The car body for the low floor bus was designed to consider Korean physical standard, passenger capacity (standee, seated, handicapped), arrangement of vehicle components, and bus law or regulations. It was designed as an one body, without any reinforcement armature, which has light-weight sandwich constructions with glass epoxy skins, aluminum honeycomb cores and inner-frames. In this paper, torsion rigidity of the designed car body was evaluated and compared with that of a car body with reinforcement armatures in the cabin. Finite element method verified that the designed car body without reinforcement armatures could satisfy requirements of torsion rigidity.

  • PDF

위성 안테나 구조물의 정현파 강제 진동에 대한 유한 요소 해석 (Finite Element Analysis for Satellite Antenna Structures Subject to Forced Sinusoidal Vibration)

  • 신원호;오일권;한재흥;오세희;이인;김천곤;박종흥
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.13-18
    • /
    • 2001
  • This paper deals with finite element analysis for free vibration and forced sine vibration of Ka- and Ku- bend antenna structures using MSC/PATRAN/NASTRAN. The structures are designed to satisfy minimum resonance frequency requirement in order to decouple the dynamic interaction of the satellite with the spacecraft bus structure. From the forced sinusoidal vibration, we have observed output acceleration versus input in X-,Y- and Z- direction, based on base excitation using large mass method. The results of finite elements analysis can be used as the reference data for the experimental test of satellite antenna, resulting in the reduction of cost and time by predicting and complementing experimental data.

  • PDF

TTX 구동차 설계안의 충돌압괴특성 분석 (Crush Analysis of a TTX M-Car Design)

  • 정현승;권태수;구정서;조태민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.616-621
    • /
    • 2004
  • In this paper, the crush characteristics of a tilting train express (TTX) M-car design are evaluated with a head-on collision scenario. Its body shell is divided into three parts - front end, middle section, and rear end. For each part, crush-force relation is evaluated numerically through 3-dimensional shell element analysis with LS-DYNA. TTX's embody structure is a hybrid type structure made of steel and composite materials. Composite sandwich panels are modeled as layered shells whose layers have different material properties. And a damage material model is used to consider the effect of stiffness degradation during deformation. The crush characteristics obtained from these calculations will be used as material modeling data of full-rake collision analyses.

  • PDF

The applications and conduct of vibration equations for constrained layered damped plates with impact

  • Luo, G.M.;Lee, Y.J.;Huang, C.H.
    • Steel and Composite Structures
    • /
    • 제8권4호
    • /
    • pp.281-296
    • /
    • 2008
  • Visco-elastic material and thin metals were adhered to plate structures, forming the composite components that are similar to the sandwich plates, called constrained layered damped (CLD) plates. Constrained layer damping has been utilized for years to reduce vibration, and advances in computation and finite element analysis software have enabled various problems to be solved by computer. However, some problems consume much calculation time. The vibration equation for a constrained layered damped plate with simple supports and an impact force is obtained theoretically herein. Then, the results of the vibration equation are compared with those obtained using the finite element method (FEM) software, ABAQUS, to verify the accuracy of the theory. Finally, the 3M constrained layer damper SJ-2052 was attached to plates to form constrained layered damped plates, and the vibration equation was used to elucidate the damping effects and vibration characteristics.

대형급 고효율 풍력 발전 시스템 블레이드 구조 설계 및 해석 연구 (A Study on Structural Design and Analysis of Large Scale and High Efficiency Blades for Wind Turbine System)

  • 공창덕;김민웅;박현범
    • 항공우주시스템공학회지
    • /
    • 제6권4호
    • /
    • pp.7-11
    • /
    • 2012
  • Recently, the renewable energy has been widely used as a wind energy and solar energy resource due to lack and environmental issues of the mostly used fossil fuel. In this situation, the interest in wind power has been risen as an important energy source. For this blade a high efficiency wind turbine blade was designed with the proposing aerodynamic design procedure, and a light and low cost composite structure blade was designed considering fatigue life. Structural analyses including load case study, stress, deformation, buckling, fatigue life and vibration analysis were performed using the Finite Element Method.

Using three-dimensional theory of elasticity for vibration analysis of laminated sectorial plates

  • Liyuan Zhao;Man Wang;Rui Yang;Meng Zhao;Zenghao Song;N. Bohlooli
    • Steel and Composite Structures
    • /
    • 제48권1호
    • /
    • pp.1-17
    • /
    • 2023
  • The main goal of this paper is to study vibration of damaged core laminated sectorial plates with Functionally graded (FG) face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular sector plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions.