• Title/Summary/Keyword: Composite fuel pellet

Search Result 8, Processing Time 0.021 seconds

Development Status of Accident-tolerant Fuel for Light Water Reactors in Korea

  • Kim, Hyun-Gil;Yang, Jae-Ho;Kim, Weon-Ju;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2016
  • For a long time, a top priority in the nuclear industry was the safe, reliable, and economic operation of light water reactors. However, the development of accident-tolerant fuel (ATF) became a hot topic in the nuclear research field after the March 2011 events at Fukushima, Japan. In Korea, innovative concepts of ATF have been developing to increase fuel safety and reliability during normal operations, operational transients, and also accident events. The microcell $UO_2$ and high-density composite pellet concepts are being developed as ATF pellets. A microcell $UO_2$ pellet is envisaged to have the enhanced retention capabilities of highly radioactive and corrosive fission products. High-density pellets are expected to be used in combination with the particular ATF cladding concepts. Two concepts-surface-modified Zr-based alloy and SiC composite material-are being developed as ATF cladding, as these innovative concepts can effectively suppress hydrogen explosions and the release of radionuclides into the environment.

Development of thermal conductivity model with use of a thermal resistance circuit for metallic UO2 microcell nuclear fuel pellets

  • Heung Soo Lee;Dong Seok Kim;Dong-Joo Kim;Jae Ho Yang;Ji-Hae Yoon;Ji Hwan Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3860-3865
    • /
    • 2023
  • A metallic microcell UO2 pellet has a microstructure where a metal wall is connected to overcome the low thermal conductivity of the UO2 fuel pellet. It has been verified that metallic microcell fuel pellets provide an impressive reduction of the fuel centerline temperature through a Halden irradiation test. However, it is difficult to predict the effective thermal conductivity of these pellets and researchers have had to rely on measurement and use of the finite element method. In this study, we designed a unit microcell model using a thermal resistance circuit to calculate the effective thermal conductivity on the basis of the microstructure characteristics by using the aspect ratio and compared the results with those of reported metallic UO2 microcell pellets. In particular, using the thermal conductivity calculated by our model, the fuel centerline temperature of Cr microcell pellets on the 5th day of the Halden irradiation test was predicted within 6% error from the measured value.

EBSD studies on microstructure and crystallographic orientation of UO2-Mo composite fuels

  • Tummalapalli, Murali Krishna;Szpunar, Jerzy A.;Prasad, Anil;Bichler, Lukas
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4052-4059
    • /
    • 2021
  • The microstructure of the fuel pellet plays an essential role in fission gas buildup and release and is critical for the safe and continued operation of nuclear power stations. Structural analysis of uranium dioxide (UO2)-molybdenum (Mo) composite fuel pellets prepared at a range of sintering temperatures from 1300 to 1800 ℃ was performed. Mo micro and nanoparticles were used in making the composite pellets. A systematic investigation into the influence of processing parameters during Spark Plasma Sintering (SPS) of the pellets on the microstructure, texture, grain size, and grain boundary characters of UO2-Mo is presented. UO2-Mo composite show significant differences in the fraction of general boundaries and also special/coincident site lattice (CSL) boundaries. EBSD orientation maps demonstrated that <111> texturing was observed in the pellets fabricated at 1500 ℃. The experimental investigations suggest that UO2-Mo composite pellets have favorable microstructural features compared to the UO2 pellet.

Synthesis of Ultrafine NiO/YSZ Composite Powder for Anode Material of Solid Oxide Fuel Cells (고체산화물 연료전지의 양극재료용 초미분체 NiO/YSZ 복합체 재료합성 연구)

  • 최창주;김태성;황종선;김선재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.422-425
    • /
    • 1999
  • Ultrafine NiO/YSZ (Yttria-Stabilized Zirconic) composite powders were prepared by using a glycine nitrate process (GNP) for anode material of solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ composite powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal ions occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized composite powders were examined with X-ray diffractometer, a BET method with $N_2$ absorption, scanning and transmission electron microscopies. Strongly acid precursor solution increased the specific surface area of the synthesized composite powders. This is suggested to be caused by the increased binding of metal ions and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of NH$_3$$^{+}$ After sintering and reducing treatment of NiO/YSZ composite powders synthesized by GNP, the Ni/YSZ pellet showed ideal microstructure very fine Ni Particles of 3-5${\mu}{\textrm}{m}$ were distributed uniformly and fine pores around Ni metal particles were formed, thus, leading to an increase of the triple phase boundary among gas, Ni and YSZ.Z.

  • PDF

Manufacture Properties of the Ultrafine NiO/YSZ Solid Oxide Composite (초미분체 NiO/YSZ 고체산화물 복합재료의 제조특성)

  • 최창주;김창석;오무송;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1080-1083
    • /
    • 2001
  • Ultrafine NiO/YSZ composite powders were prepared by using a glycine nitrate process for anode material of solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ composite powders were examined with controlling pH of a precursor solution and the content of glycine. The characteristics of synthesized composite powders were examined with X-ray diffractometer, a BET method with N$_2$absorption, scanning and transmission electron microscopy. The strongly acid precursor solution increased the specific surface area of the synthesized composite powders. This is suggested to be caused by the increased binding of metal ions and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of NH$_3$$\^$+/. After sintering and reducing treatment of NiO/YSZ composite powders synthesized by GNP, the Ni/YSZ pellet showed ideal micro-structure very fine Ni parties of 3-5${\mu}$m were distributed uniformly and fine pores around Ni metal particles were formed, thes, leading to an increase of the triple phase boundary among gas Ni and YSZ.

  • PDF

Maximizing TPBs through Ni-self-exsolution on GDC based composite anode in solid oxide fuel cells

  • Tan, Je-Wan;Lee, Dae-Hui;Kim, Bo-Gyeong;Kim, Ju-Seon;Mun, Ju-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.402.1-402.1
    • /
    • 2016
  • The performance of solid oxide fuel cells (SOFCs) is directly related to the electrocatalytic activity of composite electrodes in which triple phase boundaries (TPBs) of metallic catalyst, oxygen ion conducting support, and gas should be three-dimensionally maximized. The distribution morphology of catalytic nanoparticle dispersed on external surfaces is of key importance for maximized TPBs. Herein in situ grown nickel nanoparticle onto the surface of fluorite oxide is demonstrated employing gadolium-nickel co-doped ceria ($Gd0.2-xNixCe0.8O2-{\delta}$, GNDC) by reductive annealing. GNDC powders were synthesized via a Pechini-type sol-gel process while maximum doping ratio of Ni into the cerium oxide was defined by X-ray diffraction. Subsequently, NiO-GNDC composite were screen printed on the both sides of yttrium-stabilized zirconia (YSZ) pellet to fabricate the symmetrical half cells. Electrochemical impedance spectroscopy (EIS) showed that the polarization resistance was decreased when it was compared to conventional Ni-GDC anode and this effect became greater at lower temperature. Ex situ microstructural analysis using scanning electron microscopy after the reductive annealing exhibited the exsolution of Ni nanoparticles on the fluorite phases. The influence of Ni contents in GNDC on polarization characteristics of anodes were examined by EIS under H2/H2O atmosphere. Finally, the addition of optimized GNDC into the anode functional layer (AFL) dramatically enhanced cell performance of anode-supported coin cells.

  • PDF

A Study on Fuel Characteristics of Mixtures Using Torrefied Wood Powder and Waste Activated Carbon (반탄화 목분과 폐활성탄 혼합물의 복합연료활용을 위한 연료적 특성에 관한 연구)

  • Lee, Chang Goo;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.135-143
    • /
    • 2015
  • This study evaluated fuel properties of composite materials which were prepared by mixing a waste activated carbon from the used purifier filter with torrefied wood powder. Wood species of the raw material of torrefied wood powder are oak wood (Quercus serrata Thunb. ex Murray) and pine wood (Pinus densiflora Siebold & Zucc). And the treatment conditions used for this study were 300 s, 450 s, and 600 s at $200^{\circ}C$ for the wood roaster. Also, the mixing ratios are 5 : 95, 10 : 90, 15 : 85, 20 : 80, 40 : 60, 60 : 40 and 80 : 20 (waste activated carbon : torrefied wood powder). The fuel properties such as highly heating value (HHV), elementary analysis and ash content were evaluated. The results obtained are followings; 1. Despite the same treatment condition of wood roasting, pine wood has higher carbon contents than oak wood. Therefore, pine wood indicated the optimum carbonization at low temperature and short treatment times. 2. The gross calorific value and ash content increased as the mixing ratio of waste activated carbon increased. 3. Mixtures of the waste activated carbon and torrefied wood powder showed greater gross calorific value than those of the mixtures of waste activated carbon and the untreated wood powder. Also, the pine wood resulted in higher heating value that thaose of the oak wood. 4. When composite fuels that were composed waste activate carbon and wood powder are used, higher temperature conditions are required because the combustion is incomplete at $800^{\circ}C$ and 4 hours. 5. The increasing rate of the gross calorific value of mixtures of waste activated carbon and untreated wood powder is higher than does the mixtures of waste activated carbon and torrefied wood powder. Also, this phenomenon is more obvious for pine woods. Therefore, an optimal mixing ratio of waste activated carbon was determined to be between 5% and 10% (wt%). Also, this condition satisfied the requirement of the No.1 grade of wood pellet.

The Current Status of Recycling Process and Problems of Recycling according to the Packaging Waste of Korea (국내 포장 폐기물에 따른 재질별 재활용 공정 현황 및 재활용 문제점)

  • Ko, Euisuk;Shim, Woncheol;Lee, Hakrae;Kang, Wookgeon;Shin, Jihyeon;Kwon, Ohcheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.65-71
    • /
    • 2018
  • Paper packs, glass bottles, metal cans, and plastic materials are classified according to packaging material recycling groups that are Extended Producer Responsibility (EPR). In the case of waste paper pack, the compressed cartons are dissociated to separate polyethylene films and other foreign substance, and then these are washed, pulverized and dried to produce toilet paper. Glass bottle for recycling is provided to the bottle manufacturers after the process of collecting the waste glass bottle, removing the foreign substance, sorting by color, crushing, raw materializing process. Waste glass recycling technology of Korea is largely manual, except for removal of metal components and low specific gravity materials. Metal can is classified into iron and aluminum cans through an automatic sorting machine, compressed, and reproduced as iron and aluminum through a blast furnace. In the case of composite plastic material, the selected compressed product is crushed and then recycled through melt molding and refined products are produced through solid fuel manufacturing steps through emulsification and compression molding through pyrolysis. In the recycling process of paper packs, glass bottles, metal cans, and plastic materials, the influx of recycled materials and other substances interferes with the recycling process and increases the recycling cost and time. Therefore, the government needs to improve the legal system which is necessary to use materials and structure that are easy to recycle from the design stage of products or packaging materials.