• Title/Summary/Keyword: Composite discharge capacity

Search Result 123, Processing Time 0.026 seconds

Synthesis and Characterization of Silver Vanadium Oxide as a Cathode for Lithium Ion Batteries

  • Nguyen, Van Hiep;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.139-142
    • /
    • 2016
  • β-AgVO3 nanorods have been successfully synthesized using a soft chemistry route followed by heat treatment. They were characterized by X-ray diffraction and field emission scanning electron microscopy, and their electrochemical properties were investigated using cyclic voltammetry, impedance spectra, and charge-discharge tests. The results showed that the smooth-surfaced nanorods are very uniform and well dispersed, with diameters of ~100-200 nm and lengths of the order of several macrometers. The nanorods deliver a maximum specific discharge capacity of 275 mAh g-1 at 30 mA g-1. They also demonstrated good rate capability with a discharge capacity at the 100th cycle of 51 mAh g-1.

Electrochemical Properties of Ball-milled Tin-Graphite Composite Anode Materials for Lithium-Ion Battery (볼 밀링으로 제조된 리튬이온전지용 주석-흑연 복합체 음극재의 전기화학적 특성)

  • Lee, Tae-Hui;Hong, Hyeon-A;Cho, Kwon-Koo;Kim, Yoo-Young
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.462-469
    • /
    • 2021
  • Tin/graphite composites are prepared as anode materials for Li-ion batteries using a dry ball-milling process. The main experimental variables in this work are the ball milling time (0-8 h) and composition ratio (tin:graphite=5:95, 15:85, and 30:70 w/w) of graphite and tin powder. For comparison, a tin/graphite composite is prepared using wet ball milling. The morphology and structure of the different tin/graphite composites are investigated using X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and scanning and transmission electron microscopy. The electrochemical properties of the samples are also examined. The optimal dry ball milling time for the uniform mixing of graphite and tin is 6 h in a graphite-30wt.%Sn sample. The electrode prepared from the composite that is dry-ball-milled for 6 h exhibits the best cycle performance (discharge capacity after 50th cycle: 308 mAh/g and capacity retention: 46%). The discharge capacity after the 50th cycle is approximately 112 mAh/g, higher than that when the electrode is composed of only graphite (196 mAh/g after 50th cycle). This result indicates that it is possible to manufacture a tin/graphite composite anode material that can effectively buffer the volume change that occurs during cycling, even using a simple dry ball-milling process.

Manufacture and performance test of the composite cantilever arm for electrical discharge wire cutting machine (방전 가공기용 복합재료 외팔보의 제작 및 성능평가)

  • 최진호
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.39-46
    • /
    • 2000
  • Electrical discharge machining (EDM) cuts metal by discharging electric current across a thin gap between tool and workpiece. Electrical discharge wire cutting, a special form of EDM, uses a continuously moving conductive wire as an electrode, and is widely used for the manufacture of punches, dies and stripper plates. In the wire cutting process, the moving wire is usually supported by cantilever arm and wire guides. As the wire traveling speed has been increased in recent years to improve productivity, the vibration of the cantilever arm occurs, which reduces the positional accuracy of the machine. Therefore, the design and manufacture of the cantilever arm with high dynamic characteristics have become important as the machining speed increases. In this paper, the cantilever arm for guiding the moving wire was designed and manufactured using carbon fiber epoxy composite in order to improve the static and dynamic characteristics. Specimens for the composite cantilever arm were manufactured and tested to investigate the effect of the number of reinforcing plies and length fitted to steel flange on the load capacity. Also, the finite element analysis using layer and contact elements was performed to compare the calculated results with the experimental ones. From the results, the prototype of the composite cantilever arm for the electrical discharge wire cutting machine was manufactured and the static and dynamic characteristics were compared with those of the conventional steel cantilever arm.

  • PDF

Variation of AC Impedance of the $TiS_2$ Composite/SPE/Li Cell with Cycling ($TiS_2$ Composite/SPE/Li Cell의 충방전에 따른 AC 임피던스의 변화)

  • Kim, J.U.;Gu, H.B.;Moon, S.I.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1034-1038
    • /
    • 1995
  • The purpose of this study is to research and develop $TiS_2$ composite cathode for lithium polymer battery(LPB). $TiS_2$ electrode represent a class of insertion positive electrode used in Li secondary batteries. In this study, we investigated preparation of $TiS_2$ composite cathode and AC impedance response of $TiS_2$ composite/SPE/Li cells as a function of state of charge(SOC) and cycling. The resistance of B type cell using $TiS_2PEO_8LiClO_4PC_5EC_5$ composite cathode was lower than that of A type cell using $TiS_2PEO$ composite cathode. The cell resistance of B type cell is high for the first few percent discharge, decreases for midium discharge and then increases again toward the end of discharge. We believe the magnitude of the cell resistance is dominated by passivation layer impedance and small cathode resistance. AC impedance results indicate that the cell internal resistance increase with cycling, and this is attributed to change of passivation layer impedance with cycling. The passivation layer resistance($R_f$) of B type cell decreases for the 2nd cycling and then increases again with cycling. Redox coulombic efficiency of B type cell was about 141% at 1st cycle and 100% at 12th cycle. Also, $TiS_2$ specific capacity was 115 mAh/g at 12 cycle.

  • PDF

New Ball-Milled Metal Hydride Electrode for Rechargeable Batteries

  • Noh, Hak;Strom-Olsen, J.O.;Park, C.N.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.1
    • /
    • pp.43-47
    • /
    • 1997
  • A new type of anode materials in form of nanocrystalline composite powders has been developed that offers the potential for dramatically improved discharge capacity and initial activation rate. The composites are synthesized by ball milling of two components - a major component (basic component) having high hydrogen capacity and a minor component (surface activator) with good electrocatalytic activity. The capacity increase observed by ball milling with surface activator. The ball-milled composite materials are easier to activate than the non ball-milled basic component.

  • PDF

Fabrication and Characterization of Pitch/Cokes/Natural Graphite Composites as Anode Materials for High-Power Lithium Secondary Batteries (고출력 리튬이온 이차전지 음극재용 피치/코크스/천연흑연 복합재의 제조 및 전기화학적 특성평가)

  • Ko, Hyo Joon;Lim, Yun-Soo;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.279-287
    • /
    • 2015
  • In order to prepare anode materials for high power lithium ion secondary batteries, carbon composites were fabricated with a mixture of petroleum pitch and coke (PC) and a mixture of petroleum pitch, coke, and natural graphite (PC-NG). Although natural graphite has a good reversible capacity, it has disadvaantages of a sharp decrease in capacity during high rate charging and potential plateaus. This may cause difficulties in perceiving the capacity variations as a function of electrical potential. The coke anodes have advantages without potential plateaus and a high rate capability, but they have a low reversible capacity. With PC anode composites, the petroleum pitch/cokes mixture at 1:4 with heat treatment at $1000^{\circ}C$ (PC14-1000C) showed relatively high electrochemical properties. With PC-NG anode composites, the proper graphite contents were determined at 10~30 wt.%. The composites with a given content of natural graphite and remaining content of various petroleum pitch/cokes mixtures at 1:4~4:1 mass ratios were heated at $800{\sim}1200^{\circ}C$. By increasing the content of petroleum pitch, reversible capacity increased, but a high rate capability decreased. For a given composition of carbonaceous composite, the discharge rate capability improved but the reversible capacity decreased with an increase in heat treatment temperature. The carbonaceous composites fabricated with a mixture of 30 wt.% natural graphite and 70 wt.% petroleum pitch/cokes mixture at 1:4 mass ratio and heat treated at $1000^{\circ}C$ showed relatively high electrochemical properties, of which the reversible capacity, initial efficiency, discharge rate capability (retention of discharge capacity in 10 C/0.2 C), and charge capacity at 5 C were 330 mAh/g, 79 %, 80 %, and 60 mAh/g, respectively.

Synthesis and Characterization of Adsorbent for Pb(II)-capture by using Glow Discharge Electrolysis Plasma

  • Gao, Jinzhang;Wang, Youdi;Yang, Wu;Li, Yan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.406-414
    • /
    • 2010
  • A novel polyacrylamide grafted hydrous ferric oxide adsorbent composite has been synthesized by using glow discharge electrolysis plasma. To optimize the synthesis conditions, the following parameters were examined in detail: applied power, discharge time, post polymerization temperature, post polymerization time, amount of crosslinking agent and hydrous ferric oxide gel added and so on. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The removal percentage of the adsorbent in Pb(II) solution was examined and the data obtained showed that the adsorbent composite has a high capacity for lead ion. For the use in wastewater treatment, the thermodynamic and kinetic of Pb(II)-capture were also studied. Results indicated that the adsorption reaction was a spontaneous and an endothermic process, and it seems to be obeyed a pseudo-secondorder rate model. Moreover, the adsorption isotherm of Pb(II)-capture is following the Langmuir and Freundlich isotherm models.

Electrochemical Performance of Pitch coated Nano Silicon Sheets / Graphite Composite as Anode Material (피치로 코팅된 Nano Silicon Sheets/Graphite 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.487-492
    • /
    • 2021
  • In this study, the electrochemical properties of pitch coated silicon sheets/graphite anode materials were investigated. Using NaCl as a template, silicon sheets were prepared through the stöber method and the magnesiothermic reduction methode. In order to synthesize the anode composite, the silicon sheets and graphite were combined with SDBS. The pitch coated silicon sheets/graphite was synthesized using THF as a solvent for the anode material composite. The physical properties of the prepared anode composites were analysed by XRD, SEM, EDS and TGA. The electrochemical performances of the prepared anode composites were performed by the current charge/discharge, rate performance, cyclic voltammetry and EIS tests in the electrolyte LiPF6 dissolved solvents (EC:DMC:EMC=1:1:1 vol%). As the silicon composition of silicon sheets/graphite composite material increased, the discharge capacity also increased, but the cycle stability tended to decrease. The anode material of pitch coated silicon sheets/graphite composite (silicon sheets:graphite=3:7 weight ratio) showed the initial discharge capacity of 1228.8 mAh/g and the capacity retention ratio of 77% after 50 cycles. From these results, it was found that the cycle stability of pitch coated silicon sheets/graphite was improved.

Electrochemical Characteristics of Si/PC/CNF/PC Composite for Anode Material of Lithium ion Battery (이차전지 음극활물질 Si/PC/CNF/PC 복합 소재의 전기화학적 특성)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.798-803
    • /
    • 2018
  • In order to use Si as an anode material for lithium-ion battery, the particle size was controlled to less than $0.5{\mu}m$ and carbon was coated on the surface with the thickness less than 10 nm. The carbon fiber was grown on the Si surface with 50~150 wt%, and the carbon coating was carried out once again. The Si composite material was mixed with dissimilar metals to increase the conductivity, and graphite was mixed to improve cyclic life characteristics. The physical and electrochemical characteristics of composite materials were measured with XRD, SEM, TEM and coin cell. The discharge capacity of Si/PC/CNF/PC was lower than that of Si/PC (Pyrolytic Carbon)/CNF (Carbon Nano Fiber). However, the cyclic life of Si/PC/CNF/PC was higher. Initial discharge capacity of 1512 mA h g-1 at 0.2 C rate and initial efficiency of 78% were shown. It also showed a capacity retention of 94% in 10 cycles.

Preparation and Characterization of Porous Silicon and Carbon Composite as an Anode Material for Lithium Rechargeable Batteries

  • Park, Junsoo;Lee, Jae-Won
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si ($64.52m^2g^{-1}$) is much higher than that before etching Si/MgO ($4.28m^2g^{-1}$) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.