• 제목/요약/키워드: Composite damage

검색결과 1,069건 처리시간 0.023초

Failure analysis of laminates by implementation of continuum damage mechanics in layer-wise finite element theory

  • Mohammadi, B.;Hosseini-Toudeshky, H.;Sadr-Lahidjani, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.657-674
    • /
    • 2009
  • In this paper a 3-D continuum damage mechanics formulation for composite laminates and its implementation into a finite element model that is based on the layer-wise laminate plate theory are described. In the damage formulation, each composite ply is treated as a homogeneous orthotropic material exhibiting orthotropic damage in the form of distributed microscopic cracks that are normal to the three principal material directions. The progressive damage of different angle ply composite laminates under quasi-static loading that exhibit the free edge effects are investigated. The effects of various numerical modeling parameters on the progressive damage response are investigated. It will be shown that the dominant damage mechanism in the lay-ups of [+30/-30]s and [+45/-45]s is matrix cracking. However, the lay-up of [+15/-15] may be delaminated in the vicinity of the edges and at $+{\theta}/-{\theta}$ layers interfaces.

Puck 파손기준-손상역학 연계이론을 활용한 적층 복합재료의 점진적 파손해석기법 개발 (Development of Progressive Failure Analysis Method for Composite Laminates based on Puck's Failure Criterion-Damage Mechanics Coupling Theories)

  • 이치승;이제명
    • 대한조선학회논문집
    • /
    • 제52권1호
    • /
    • pp.52-60
    • /
    • 2015
  • In the present study, an evaluation method for progressive failure of composite laminates has been proposed based on Puck's failure criterion and damage mechanics. The initial failure (or initiation of crack/delamination) has been assessed using Puck's failure criterion, and the progressive failure (or growth of crack/delamination) has been evaluated using fiber- and matrix-dependent damage variables. Based on Puck's failure criterion-damage mechanics coupling theories, the ABAQUS user-defined subroutine UMAT has been developed in order to analyze the progressive failure of glass/carbon fiber-reinforced composite laminates efficiently. In addition, the developed subroutine has been applied to progressive failure problem of industrial composite laminates, and the analysis results has been compared to experimental results which have been already reported in publications. It was confirmed that the simulation results were coincided well with the reported composite failure results.

복합재 항공구조물의 손상허용평가를 위한 운항수명의 확률적 모델 (Probabilistic Model of Service Life to Evaluate Damage Tolerance of Composite Structure)

  • A.스튜어트;A.우샤코프;심재열;황인희
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.245-248
    • /
    • 2000
  • Modern aircraft composite structures are designed using a damage tolerance philosophy. This design philosophy envisions sufficient strength and structural integrity of the aircraft to sustain major damage and to avoid catastrophic failure. The only reasonable way to treat on the same basis all the conditions and uncertainties participating in the design of damage tolerant composite aircraft structures is to use the probability-based approach. Therefore, the model has been developed to assess the probability of structural failure (POSF) and associated risk taking into account the random mechanical loads, random temperature-humidity conditions, conditions causing damages, as well as structural strength variations due to intrinsic strength scatter, manufacturing defects, operational damages, temperature-humidity conditions. The model enables engineers to establish the relationship between static/residual strength safety margins, production quality control requirements, in-service inspection resolution and criteria, and POSF. This make possible to estimate the cost associated with the mentioned factors and to use this cost as overall criterion. The methodology has been programmed into software.

  • PDF

Seismic damage assessment of steel reinforced recycled concrete column-steel beam composite frame joints

  • Dong, Jing;Ma, Hui;Zhang, Nina;Liu, Yunhe;Mao, Zhaowei
    • Earthquakes and Structures
    • /
    • 제14권1호
    • /
    • pp.73-84
    • /
    • 2018
  • Low cyclic loading tests are conducted on the steel reinforced recycled concrete (SRRC) column-steel (S) beam composite frame joints. This research aims to evaluate the earthquake damage performance of composite frame joints by performing cyclic loading tests on eight specimens. The experimental failure process and failure modes, load-displacement hysteresis curves, characteristic loads and displacements, and ductility of the composite frame joints are presented and analyzed, which shows that the composite frame joints demonstrate good seismic performance. On the basis of this finding, seismic damage performance is examined by using the maximum displacement, energy absorbed in the hysteresis loops and Park-Ang model. However, the result of this analysis is inconsistent with the test failure process. Therefore, this paper proposes a modified Park-Ang seismic damage model that is based on maximum deformation and cumulative energy dissipation, and corrected by combination coefficient ${\alpha}$. Meanwhile, the effects of recycled coarse aggregate (RCA) replacement percentage and axial compression ratio on the seismic damage performance are analyzed comprehensively. Moreover, lateral displacement angle is used as the quantification index of the seismic performance level of joints. Considering the experimental study, the seismic performance level of composite frame joints is divided into five classes of normal use, temporary use, repair after use, life safety and collapse prevention. On this basis, the corresponding relationships among seismic damage degrees, seismic performance level and quantitative index are also established in this paper. The conclusions can provide a reference for the seismic performance design of composite frame joints.

예 하중이 유리섬유 복합재료 곡선 보의 충격특성에 미치는 영향 (Impact Characteristics of Glass Fiber Reinforced Composite Curved Beams w.r.t. Pre-load)

  • 이승민;임태성;이대길
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.162-167
    • /
    • 2004
  • The low velocity impact characteristics of composite laminate curved beams are investigated to increase damage tolerance and reduce the deflection. Drop weight impact tests of the composite curved beam were performed with respect to pre-load, then the damage after impact was measured by macrography. Also, finite element analyses were performed using ABAQUS to investigate the stress state of composite curved beam with respect to pre-load and impact. From the investigation, it was found that pre-load of the composite curved beams had much influence on impact damage of the curved beam, which showed good agreement with the experiment results.

  • PDF

Experimental and Numerical Simulation Studies of Low-Velocity Impact Responses on Sandwich Panels for a BIMODAL Tram

  • Lee, Jae-Youl;Shin, Kwang-Bok;Jeong, Jong-Cheol
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.1-20
    • /
    • 2009
  • This paper describes the results of experiments and numerical simulation studies on the impact and indentation damage created by low-velocity impact subjected onto honeycomb sandwich panels for application to the BIMODAL tram. The test panels were subjected to low-velocity impact loading using an instrumented testing machine at six energy levels. Contact force histories as a function of time were evaluated and compared. The extent of the damage and depth of the permanent indentation was measured quantitatively using a 3-dimensional scanner. An explicit finite element analysis based on LS-DYNA3D was focused on the introduction of a material damage model and numerical simulation of low-velocity impact responses on honeycomb sandwich panels. Extensive material testing was conducted to determine the input parameters for the metallic and composite face-sheet materials and the effective equivalent damage model for the orthotropic honeycomb core material. Good agreement was obtained between numerical and experimental results; in particular, the numerical simulation was able to predict impact damage area and the depth of indentation of honeycomb sandwich composite panels created by the impact loading.

Evaluation of the Damage Mechanism in CFRP Composite Using Computer Vision

  • Kwon, Oh-Heon;Xu, Shaowen;Sutton, Michael
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.686-694
    • /
    • 2010
  • Continuing progress in high technology has created numerous industrial applications for new advanced composite materials. Among these materials, carbon fiber-reinforced plastic (CFRP) laminate composite is typically used for low-weight carrying structures that require high specific strength. In this study, the damage mechanism of a compact tension (CT) specimen of woven CFRP laminates is described in terms of strain and displacement changes and crack growth behavior. The digital image correlation (DIC) method (which is employed here as a computer vision technique) is analyzed. Acoustic emission (AE) characteristics are also acquired during fracture tests. The results demonstrate the usefulness of these methods in evaluating the damage mechanism for woven CFRP laminate composites. From the results, we show these methods are so useful in order to evaluate the damage mechanism for woven CFRP laminate composites.

경전철용 복합적층재에 대한 저속충격특성의 실험적 연구 (Experimental Investigation of Low Velocity Impact Characteristics of Composites Laminate Used in the Light Rail Transit)

  • 김재훈;김후식;박병준;조정미;주정수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.211-216
    • /
    • 2001
  • It is well known that composite laminates are easily damaged by low velocity impact. Low velocity impact damage characteristics and residual compressive strength of composite laminates used in light rail transit are investigated. The damage of composite laminates subjected to impact loading are occurred matrix cracking, delamination, and fiber breakage. The damage of matrix cracking and delamination are reduced suddenly the compressive strength after impact. The objectives of this study is to evaluate impact characteristics and the relationship between impact force and inside damage of composite laminates by low velocity impact loading. UT C-scan is used to determine impact damage areas by impact loading.

  • PDF

복합재 헬리콥터 로터 블레이드의 피로 및 손상허용 평가 방안 (Fatigue and Damage Tolerance Evaluation of Composite Helicopter Rotor Blades)

  • 기영중;백승길
    • 항공우주시스템공학회지
    • /
    • 제8권3호
    • /
    • pp.41-46
    • /
    • 2014
  • Fatigue evaluations for the rotor blades of commercial or military rotorcraft have been carried out using the safe life concept since 1950s. Particularly, in the case of a rotor blade made of a composite material, a highly reliable fatigue life could be predicted by evaluation the cumulative damage using combination of fatigue life curve and load spectrum. However, there is a limit in adequately evaluating the strength reducing phenomena caused by damages or defects generated during the manufacturing process or impact damage induced by operational usages, using only the safe life concept. In this study, the fatigue evaluation process based on the damage tolerance concept is described and illustrated by means of successful application to substantiate the retirement time of composite rotor blades.

Seismic fragility of a typical bridge using extrapolated experimental damage limit states

  • Liu, Yang;Paolacci, Fabrizio;Lu, Da-Gang
    • Earthquakes and Structures
    • /
    • 제13권6호
    • /
    • pp.599-611
    • /
    • 2017
  • This paper improves seismic fragility of a typical steel-concrete composite bridge with the deck-to-pier connection joint configuration at the concrete crossbeam (CCB). Based on the quasi-static test on a typical steel-concrete composite bridge model under the SEQBRI project, the damage states for both of the critical components, the CCB and the pier, are identified. The finite element model is developed, and calibrated using the experimental data to model the damage states of the CCB and the bridge pier as observed from the experiment of the test specimen. Then the component fragility curves for both of the CCB and the pier are derived and combined to develop the system fragility curves of the bridge. The uncertainty associated with the mean system fragility has been discussed and quantified. The study reveals that the CCB is more vulnerable than the pier for certain damage states and the typical steel-concrete composite bridge with CCB exhibits desirable seismic performance.