• Title/Summary/Keyword: Composite damage

Search Result 1,092, Processing Time 0.026 seconds

The Effect of Surface Protective Material on the Impact Resistance in Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 충격저항성에 미치는 표면 고무 보호재료의 영향)

  • Kang, Ki-Weon;Kim, Young-Soo;Lee, Mee-Hae;Choi, Rin
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.14-19
    • /
    • 2005
  • One area in which composites have been used rather extensively is for fabricating pressure vessel. These structures can be readily manufactured by filament winding, which is, as far as composite fabrication techniques are concerned, a relatively inexpensive method for producing composite structures. Unfortunately, the higher strength material and fabrication costs are not the only disadvantages of fiber-reinforced polymer composites when they are compared to metals. Additionally, these materials tend to exhibit brittle behavior. This is of particular concern when they are subjected to a low-velocity impact during routine handling a significant amount of structural damage can be introduced into the composites. The goals of this paper are to understand the impact damage behavior and identify the effect of surface coating materials on impact resistance in filament wound composite pressure vessels. For these, a series of low velocity impact tests was performed on specimens cutting from the full scale pressure vessel by the instrumented impact testing machine. The specimens are classified into two types with and without surface protective material. The visualization for impact damage is made by metallurgical microscope. Based on the impact force history and damage, the resistance parameters were employed and its validity in identifying the damage resistance of pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the protective material were evaluated quantitatively.

PCD 공구에 의한 Graphite/Epoxy 복합재료 가공시 발생하는 표면조도의 특성 연구

  • 왕덕현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.101-105
    • /
    • 1992
  • Machined graphite/epoxy composite surfaces were studied by using SEM(Scanning Electron Microscopy). surface profilometry and its analysis to determine suitable surface describing parameters for machined unidirectional and laminate composite surface. The surface roughness and profile are found to be highly dependent on the fiber layup direction and the measurement direction. Machined unidirectional and 0.deg. 45 .deg. 90 .deg. plies in laminate composite surface profiles are found to be Gaussian in the direction of machining. Since there exist bare fibers without matrix smearing in 0 .deg. ply, higher surface roughness values were found in this orientation. It was possible to machine 90 .deg. and -45 .deg. plies due to the adjacent plies, which were holding those plies. It was found that the microgeometrical variations in terms of roughness parameters Ra without Dy (maximum Damage Depth) region and Dy are better descriptors of the machined laminate composite surface than commonly used roughness parameters Ra and Ra. The characteristics of surface profiles in laminate composite are well represented in CHD (Cumulative Height Distribution) plot and PPD (Percentage Probability Density) plot. Also, the power spectral density function is shown to be capable of identifying the wavelength distribution of the machining damage.

Effect of fiber content on flexural properties of fishnet/GFRP hybrid composites

  • Raj, F. Michael;Nagarajan, V.A.;Elsi, S. Sahaya;Jayaram, R.S.
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.13-24
    • /
    • 2016
  • In the present paper, glass fibers are substituted partially with monofilament fishnet and polyester matrix for making the composites. The composite specimens were prepared in accordance with ASTM for analyzing the flexural strength and dynamic mechanical properties. Furthermore, machinability revealed the interaction of glass fiber and partial substituted monofilament fishnet fiber with the matrix. Fiber pullouts on the fractured specimen during the physical testing of the composites are also investigated by COSLAB microscope. The results reveal that the fishnet based composites have appreciably higher flexural properties. Furthermore, the glass fiber, woven roving and fishnet composite has more storage modulus and significant mechanical damping. The composite specimens were fabricated by hand lay-up method. Hence, these composites are the possible applications to develop the value added products. The results of this study are presented.

A Study on the Impact Damage and Residual Bending Strength of CF/EPOXY Composite Laminate Plates Under High Temperature (고온분위기하에서 탄소섬유강화 복합재적층판의 충격손상과 잔류굽힘강도)

  • 양인영;박정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1930-1938
    • /
    • 1994
  • In this paper, the effects of temperature change on the impact of CFRP laminates was experimentally studied. Composite laminates used for this experiment are CFRP orthotropic laminated plates, which have two-interfaces$[0_6^{\circ}/90_7^{\circ}]_s$ and four-interfaces$[0_3^{\circ}/90_6^{\circ}/0_3^{\circ}]_s$. The interrelations between the impact energy vs. delamination area, the impact energy vs. residual bending strength, and the interlayer delamination area vs. the decrease of the residual flexural strength of carbon fiber epoxy composite laminates subjected to FOD(Foreign Object Damage) under high temperatures were experimentally observed.

Responses of Ultrasonic Backscattered Energy and AE Charateristics on the Progressive Damage of Crossply Composite Laminates (초음파와 음향 방출법을 이용한 복합재료 직교적층판의 점진적 손상과정에 관한 연구)

  • Jeon, Heung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1084-1092
    • /
    • 2000
  • Responses of ultrasonic back scattered energy and AE (Acoustic Emission) characteristics related to the progressive damage of $[0/90-{2}]_s$ and $[0/90-{4}]_s$ crossply laminates were studied. It was found that the ultrasonic backscattered energy was sensitive to the matrix cracking but not sensitive to other failure mechanisms. However, AE was proved to be sensitive to matrix cracking as well as other failure mechanisms.AE signals were analyzed by investigating the amplitude and number of counts per event for corresponding applied strain. Loading and unloading tests were conducted separately. AE results showed Kaiser effect in the crossply composite laminates and ultrasonic results supported the AE results.

A Study on 4 Point Bending Strength of Aircraft Composite Specimens (항공기 복합재료 적용 시편의 4점 굽힘 강도 연구)

  • Kong, Changduk;Park, Hyunbum;Lim, Seongjin
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.23-26
    • /
    • 2010
  • In this study, it was performed damage assesment of small scale composite aircraft developing. This aircraft adopted the sandwich structure to skin of wing. This study aims to investigate the residual strength of sandwich composites with Nomex honeycomb core and carbon fiber face sheets after the open hole damage by the experimental investigation. The 4-point bending tests were used to find the bending strength, and the open hole was applied to introduce the simulated damage on the specimen. The bending strength test results after open hole was compared with the results of no damaged specimen test. The FEM analysis is assessed via an experimental 4-point bending test.

  • PDF

Damage propagation for aircraft structural analysis of composite materials

  • Hung, C.C.;Nguyen, T.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.149-167
    • /
    • 2022
  • A Modified fuzzy mechanical control of large-scale multiple time delayed dynamic systems in states is considered in this paper. To do this, at the first level, a two-step strategy is proposed to divide a large system into several interconnected subsystems. And we focus on the damage propagation for aircraft structural analysis of composite materials. As a modified fuzzy control command, the next was received as feedback theory based on the energetic function and the LMI optimal stability criteria which allow researchers to solve this problem and have the whole system in asymptotically stability. And we focus on the results which shows the high effective by the proposed theory utilized for damage propagation for aircraft structural analysis of composite materials.

The Toughening Mechanism of the Rubber-Modified Epoxy Resin (고무 변성 에폭시의 고인화 메카니즘)

  • 이덕보;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.106-109
    • /
    • 2001
  • In this work, we investigate the toughening mechanism of the rubber-modified epoxy resin. The fracture toughness($K_{IC}$) is measured using CT specimens for three kinds of rubber-modified epoxy resin with different rubber content. The damage zone and rubber particles around a crack tip of a damaged specimen just before fracture are observed by a polarization microscope and an atomic force microscope(AFM). Both the fracture energy($G_{IC}$) and the size of damage zone increase with the rubber content below l5wt%. The size of the rubber particles can be qualitatively correlated with the $G_{IC}$ and the size of damage zone. The cavitation of the rubber particles inside the damage zone is observed, which is expected to be main toughening mechanism by rubber particles. the stress which causes the cavitation of rubber particles is estimated by the Dugdale model.

  • PDF

Study on Damage Repair of Polymer Composites Using Self-Healing Technique (Self-healing Technique을 적용한 폴리머 복합재의 손상 보수 연구)

  • ;;M.R. Kessler;S.R. White
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.93-96
    • /
    • 2001
  • Structural polymer composites are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. A recent methodology for the damage repair of polymer composites using the self-healing technique is reported. The polymerization of the healing agent is triggered by contact with an embedded catalyst, being necessary to damage repair of polymer composites. For this purpose, the self-healing concept is introduced and the manufacturing process of microcapsule with the healing agent is briefly described. The polymerization between the healing agent and the catalyst is verified by the use of ESEM and IR spectroscopy. Finally the efficiency of the self-healing technique is investigated by measuring the critical load of TDCB specimen.

  • PDF

Effects of tendon damage on static and dynamic behavior of CFTA girder

  • Vu, Thuy Dung;Lee, Sang Yoon;Chaudhary, Sandeep;Kim, Dookie
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.567-583
    • /
    • 2013
  • Experimental studies and finite element analyses have been carried out to establish the effect of tendon damage on the structural behavior of concrete filled tubular tied arch girder (CFTA girder). The damage of tendon is considered in different stages by varying the number of damaged cables in the tendon. Static and dynamic structural parameters are observed at each stage. The results obtained from the experiments and numerical studies have been compared to validate the studies. The tendons whose damage can significantly affect the stiffness of the CFTA girder are identified by performing the sensitivity analysis. The locations in the girder which are sensitive to the tendon damage are also identified.