• 제목/요약/키워드: Composite columns

검색결과 731건 처리시간 0.019초

광섬유 센서를 이용한 탄소섬유시트 보수보강 콘크리트구조물에서의 자기진단기법 (Self Diagnosis Technique of Concrete Structure Repaired and Strengthened by Carbon fiber Sheets Using Optical fiber Sensors)

  • 김기수
    • 비파괴검사학회지
    • /
    • 제23권2호
    • /
    • pp.133-139
    • /
    • 2003
  • 노후 된 콘크리트 사회기반시설 구조물의 활용성 증대와 수명의 연장을 위하여 여러 가지의 보수보강 방법이 시행되어지고 있으나 최근에는 시공이 용이하고 보강효과가 좋은 탄소섬유시트를 활용하는 방법이 널리 쓰여지고 있다. 탄소 섬유로 보수보강을 할 경우 강도가 증진되고 강성이 향상되어 좋은 방법으로 알려져 있으나, 철근 콘크리트에 비해 연성이 떨어져 파괴 시 취성 파괴의 형태를 보일 수 있다, 그리고 보수보강된 구조물을 보강재로 인하여 크랙의 진전을 맨눈으로 확인하기가 어려워지게 된다. 따라서 구조물의 취약함을 드러내는 시기인 보수보강시 광섬유센서를 내장케 하여 취성파괴를 감시하고 구조물의 거동을 모니터링함으로써 안전한 구조물이 되도록 할 수 있다. 이를 위하여 본 논문에서는 광섬유센서를 이용하여 모재와 보강재의 구조거동을 분석하였으며, Peel out 효과라 불리는 계면 파괴현상을 효과적으로 자기진단 할 수 있음을 입증하였다.

A simple panel zone model for linear analysis of steel moment frames

  • Saffari, Hamed;Morshedi, Esmaeil
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.579-598
    • /
    • 2020
  • Consideration of the panel zone (PZ) deformations in the analysis of steel moment frames (SMFs) has a substantial effect on structural response. One way to include the PZ effect on the structural response is Krawinkler's PZ model, which is one of the best and conventional models. However, modeling of Krawinkler's PZ model has its complexity, and finding an alternative procedure for PZ modeling is of interest. In this study, an efficient model is proposed to simplify Krawinkler's PZ model into an Adjusted Rigid-End Zone (AREZ). In this way, the rigid-end-zone dimensions of the beam and column elements are defined through an appropriate rigid-end-zone factor. The dimensions of this region depend on the PZ stiffness, beam(s) and columns' specifications, and connection joint configuration. Thus, to obtain a relationship for the AREZ model, which yields the dimensions of the rigid-end zone, the story drift of an SMF with Krawinkler's PZ model is equalized with the story drift of the same structure with the AREZ model. Then, the degree of accuracy of the resulting relationship is examined in several connections of generic SMFs. Also, in order to demonstrate the applicability of the proposed model in SMFs, several SMFs ranging from 3- to 30-story representing low- to high-rise buildings are examined through linear static and dynamic time history analysis. Furthermore, non-linear dynamic analyses of three SMFs conducted to validate the degree of accuracy of the proposed model in the non-linear analysis of SMFs. Analytical results show that there is considerable conformity between inter-story drift ratio (IDR) results of the SMFs with Krawinkler's PZ model and those of the centerline SMFs with AREZ.

Cyclic testing of chevron braced steel frames with IPE shear panels

  • Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1167-1184
    • /
    • 2015
  • Despite considerable life casualty and financial loss resulting from past earthquakes, many existing steel buildings are still seismically vulnerable as they have no lateral resistance or at least need some sort of retrofitting. Passive control methods with decreasing seismic demand and increasing ductility reduce rate of vulnerability of structures against earthquakes. One of the most effective and practical passive control methods is to use a shear panel system working as a ductile fuse in the structure. The shear Panel System, SPS, is located vertically between apex of two chevron braces and the flange of the floor beam. Seismic energy is highly dissipated through shear yielding of shear panel web while other elements of the structure remain almost elastic. In this paper, lateral behavior and related benefits of this system with narrow-flange link beams is experimentally investigated in chevron braced simple steel frames. For this purpose, five specimens with IPE (narrow-flange I section) shear panels were examined. All of the specimens showed high ductility and dissipated almost all input energy imposed to the structure. For example, maximum SPS shear distortion of 0.128-0.156 rad, overall ductility of 5.3-7.2, response modification factor of 7.1-11.2, and finally maximum equivalent viscous damping ratio of 35.5-40.2% in the last loading cycle corresponding to an average damping ratio of 26.7-30.6% were obtained. It was also shown that the beam, columns and braces remained elastic as expected. Considering this fact, by just changing the probably damaged shear panel pieces after earthquake, the structure can still be continuously used as another benefit of this proposed retrofitting system without the need to change the floor beam.

절곡된 단면을 갖는 얇은 판요소 콘크리트 충전 각형강관 기둥의 부착거동 (Bond Behavior of Thin-Walled Rectangular Profiled Steel Sheet Concrete Short Columns)

  • 윤현도;박완신;한병찬
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.233-241
    • /
    • 2005
  • 본 연구는 콘크리트로 충전한 절곡된 단면을 갖는 각형강관 기둥의 부착특성을 매입인발(Pull-out) 시험을 통해 평가하였다. 시험체는 단면 $250{\times}250mm$의 강관 단면에 콘크리트를 충진한 PSSC기둥으로 표준형(P), 사다리꼴(I), 직사각형(II), 역사다리꼴(III)의 4가지 형태(Fig. 3)와, 부착길이에 대한 폭비 (L/D=2.0, 2.5, 3.0) 단면의 폭두깨비(d/t)으로 설정하여 총 13로 하였다. 실험결과 얇은 판요소 절곡된 강관과 콘크리트의 부착거동은 일반적인 부착거동과 유사하게 화학적 부착과 기계적 부착의 형태로 거동하였으며, 부착응력은 강판의 절곡형태가 (equation omitted)순으로 높게 나타났다. 또한 (equation omitted)타입 시험체의 경우에는 얇은 판요소를 갖는 단면임에도 불구하고 AIJ에서 제시하고 있는 $0.147N/mm^2$의 값을 상회하는 것으로 나타나 부착응력을 고려할 수 있을 것으로 판단되었다.

Experimental study of failure mechanisms in elliptic-braced steel frame

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas;Beheshti-Aval, S. Bahram
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.175-191
    • /
    • 2020
  • In this article, for the first time, the seismic behavior of elliptic-braced moment resisting frame (ELBRF) is assessed through a laboratory program and numerical analyses of FEM specifically focused on the development of global- and local-type failure mechanisms. The ELBRF as a new lateral braced system, when installed in the middle bay of the frames in the facade of a building, not only causes no problem to the opening space of the facade, but also improves the structural behavior. Quantitative and qualitative investigations were pursued to find out how elliptic braces would affect the failure mechanism of ELBRF structures exposed to seismic action as a nonlinear process. To this aim, an experimental test of a ½ scale single-story single-bay ELBRF specimen under cyclic quasi-static loading was run and the results were compared with those for X-bracing, knee-bracing, K-bracing, and diamond-bracing systems in a story base model. Nonlinear FEM analyses were carried out to evaluate failure mechanism, yield order of components, distribution of plasticity, degradation of structural nonlinear stiffness, distribution of internal forces, and energy dissipation capacity. The test results indicated that the yield of elliptic braces would delay the failure mode of adjacent elliptic columns and thus, help tolerate a significant nonlinear deformation to the point of ultimate failure. Symmetrical behavior, high energy absorption, appropriate stiffness, and high ductility in comparison with the conventional systems are some of the advantages of the proposed system.

역상 액체 크로마토그래피에 의한 몇가지 금속-Dithiocarbamate 킬레이트의 용리거동 및 동시분석에 관한 연구 (Studies on the Elution Behavior and the Simultaneous Analysis of Some Metal-Dithiocarbamate Chelates by Reversed-Phase High Performance Liquid Chromatography)

  • 이대운;김연제;김현철;이원
    • 대한화학회지
    • /
    • 제32권3호
    • /
    • pp.211-226
    • /
    • 1988
  • 역상 액체 크로마토그래피에 의하여 몇 가지 금속-dithiocarbamate(DTC) 킬레이트의 용리거동을 Novapak $C_{18}${\mu}$-Bondapak $C_{18}$ 분리관을 사용하여 연구하고, 아울러 동시 분리정량에 미치는 pH, 진탕시간, 흐름속도, 추출용매 종류 및 이동상의 세기등 여러가지 인자들의 영향을 조사 검토하였다. 미량 금속-DTC 킬레이트들은 Novapak $C_{18}$ 분리관에서 acetonitrile/methanol/water 또는 acetonitrile/water의 용리액을 사용하여 성공적으로 분리되었다. 모든 금속-DTC 킬레이트의 용매세기 인자는 $0{\leqq}log\;k'{\leqq}1$ 의 범위임을 확인하였고, 회수율을 97.0-106.7 %, coefficient of variation은 0.98-3.41%이었다. 최적 분석 조건에서 합성 시료중에 있는 혼합 금속 이온들은 상대 오차 ${\pm}$6.7 % 이내에서 동시 분리정량이 가능하였다.

  • PDF

Influence of the cylinder height on the elasto-plastic failure of locally supported cylinders

  • Jansseune, Arne;De Corte, Wouter;Vanlaere, Wesley;Van Impe, Rudy
    • Steel and Composite Structures
    • /
    • 제12권4호
    • /
    • pp.291-302
    • /
    • 2012
  • Frequently, steel silos are supported by discrete supports or columns to permit easy access beneath the barrel. In such cases, large loads are transferred to the limited number of supports, causing locally high axial compressive stress concentrations in the shell wall above the supports. If not dealt with properly, these increased stresses will lead to premature failure of the silo due to local instability in the regions above the supports. Local stiffening near the supports is a way to improve the buckling resistance, as material is added in the region of elevated stresses, levelling these out to values found in uniformly supported silos. The aim of a study on the properties of local stiffening will then be to increase the failure load, governed by an interaction of plastic collapse and elastic instability, to that of a discrete supported silo. However, during the course of such a study it was found that, although the failure remains local, the cylinder height is also a parameter that influences the failure mechanism, a fact that is not properly taken into account in current design practice and codes. This paper describes the mechanism behind the effect of the cylinder height on the failure load, which is related to pre-buckling deformations of the shell structure. All results and conclusions are based on geometrically and materially non-linear finite element analyses.

Form-LPSRC 기둥 개발 및 적용 연구 (Construction Application of a Newly Developed Form-Latticed Prefabricated Steel Reinforced Concrete Column)

  • 백호진;이승환;김수영
    • 한국건축시공학회지
    • /
    • 제14권5호
    • /
    • pp.487-495
    • /
    • 2014
  • 골조공사는 프로젝트의 전체 공사비 및 공사기간에서 차지하는 비율에 매우 높으며, 대형 프로젝트에서 골조공사 공기단축은 프로젝트의 성패를 결정하는 중요한 요소이다. 이에 공기단축을 위한 새로운 공법에 대한 연구가 지속적으로 이루어져 오고 있다. H형강 대신 앵글을 사용하는 PSRC 합성기둥은 기존의 SRC 기둥에 비해 높은 휨강도 및 연성도를 가지며 현장에서의 철근작업을 생략할 수 있다는 장점이 있으나, 여전히 거푸집작업이 필요하다는 한계점이 있다. 본 연구는 기존의 PSRC 기둥 공법을 개선하여 영구거푸집까지 선조립하는 Form-LPSRC 기둥 공법을 개발하는 것을 목적으로 한다. Mock-up test를 통해 발생 가능한 문제점을 사전에 검토함과 동시에 현장 적용을 통해 해당 공법의 적용효과를 분석하였으며, 기존 SRC 기둥에 공기, 원가, 품질, 안전, 환경 측면에서 우수한 것으로 나타났다.

Testing, simulation and design of back-to-back built-up cold-formed steel unequal angle sections under axial compression

  • Ananthi, G. Beulah Gnana;Roy, Krishanu;Chen, Boshan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.595-614
    • /
    • 2019
  • In cold-formed steel (CFS) structures, such as trusses, transmission towers and portal frames, the use of back-to-back built-up CFS unequal angle sections are becoming increasingly popular. In such an arrangement, intermediate welds or screw fasteners are required at discrete points along the length, preventing the angle sections from buckling independently. Limited research is available in the literature on axial strength of back-to-back built-up CFS unequal angle sections. The issue is addressed herein. This paper presents an experimental investigation on both the welded and screw fastened back-to-back built-up CFS unequal angle sections under axial compression. The load-axial shortening and the load verses lateral displacement behaviour along with the deformed shapes at failure are reported. A nonlinear finite element (FE) model was then developed, which includes material non-linearity, geometric imperfections and modelling of intermediate fasteners. The FE model was validated against the experimental test results, which showed good agreement, both in terms of failure loads and deformed shapes at failure. The validated FE model was then used for the purpose of a parametric study to investigate the effect of different thicknesses, lengths and, yield stresses of steel on axial strength of back-to-back built-up CFS unequal angle sections. Five different thicknesses and seven different lengths (stub to slender columns) with two different yield stresses were investigated in the parametric study. Axial strengths obtained from the experimental tests and FE analyses were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparisons show that the current DSM is conservative by only 7% on average, while predicting the axial strengths of back-to-back built-up CFS unequal angle sections.

The multi-axial testing system for earthquake engineering researches

  • Lin, Te-Hung;Chen, Pei-Ching;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.165-176
    • /
    • 2017
  • Multi-Axial Testing System (MATS) is a 6-DOF loading system located at National Center for Research on Earthquake Engineering (NCREE) in Taiwan for advanced seismic testing of structural components or sub-assemblages. MATS was designed and constructed for a large variety of structural testing, especially for the specimens that require to be subjected to vertical and longitudinal loading simultaneously, such as reinforced concrete columns and lead rubber bearings. Functionally, MATS consists of a high strength self-reacting frame, a rigid platen, and a large number of servo-hydraulic actuators. The high strength self-reacting frame is composed of two post-tensioned A-shape reinforced concrete frames interconnected by a steel-and-concrete composite cross beam and a reinforced concrete reacting base. The specimen can be anchored between the top cross beam and the bottom rigid platen within a 5-meter high and 3.25-meter wide clear space. In addition to the longitudinal horizontal actuators that can be installed for various configurations, a total number of 13 servo-hydraulic actuators are connected to the rigid platen. Degree-of-freedom control of the rigid platen can be achieved by driving these actuators commanded by a digital controller. The specification and information of MATS in detail are described in this paper, providing the users with a technical point of view on the design, application, and limitation of MATS. Finally, future potential application employing advanced experimental technology is also presented in this paper.