• Title/Summary/Keyword: Composite columns

Search Result 731, Processing Time 0.021 seconds

Behaviour and design of demountable steel column-column connections

  • Li, Dongxu;Uy, Brian;Patel, Vipul;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.429-448
    • /
    • 2016
  • This paper presents a finite element (FE) model for predicting the behaviour of steel column-column connections under axial compression and tension. A robustness approach is utilised for the design of steel column-column connections. The FE models take into account for the effects of initial geometric imperfections, material nonlinearities and geometric nonlinearities. The accuracy of the FE models is examined by comparing the predicted results with independent experimental results. It is demonstrated that the FE models accurately predict the ultimate axial strengths and load-deflection curves for steel column-column connections. A parametric study is carried out to investigate the effects of slenderness ratio, contact surface imperfection, thickness of cover-plates, end-plate thickness and bolt position. The buckling strengths of steel column-column connections with contact surface imperfections are compared with design strengths obtained from Australian Standards AS4100 (1998) and Eurocode 3 (2005). It is found that the column connections with maximum allowable imperfections satisfy the design requirements. Furthermore, the steel column-column connections analysed in this paper can be dismantled and reused safely under typical service loads which are usually less than 40% of ultimate axial strengths. The results indicate that steel column-column connections can be demounted at 50% of the ultimate axial load which is greater than typical service load.

Collapse of steel cantilever roof of tribune induced by snow loads

  • Altunisik, Ahmet C.;Ates, Sevket;Husem, Metin;Genc, Ali F.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.273-283
    • /
    • 2017
  • In this paper, it is aimed to present a detail investigation related to structural behavior of laterally unrestrained steel cantilever roof of tribune with slender cross section. The structure is located in Tutak town in $A{\breve{g}}r{{\i}}$ and collapsed on October 25, 2015 at eastern part of Turkey is considered as a case study. This mild sloped roof structure was built from a variable I beam, and supported on steel columns of 5.5 m height covering totally $240m^2$ closed area in plan. The roof of tribune collapsed completely without any indication during first snowfall after construction at midnight a winter day, fortunately before the opening hours. The meteorological records and observations of local persons are combined together to estimate the intensity of snow load in the region and it is compared with the code specified values. Also, the wide/thickness and height/thickness ratios for flange and web are evaluated according to the design codes. Three dimensional finite element model of the existing steel tribune roof is generated considering project drawings and site investigations using commercially available software ANSYS. The displacements, principal stresses and strains along to the cantilever length and column height are given as contour diagrams and graph format. In addition to site investigation, the numerical and analytical works conducted in this study indicate that the unequivocal reasons of the collapse are overloading action of snow load intensity, some mistakes made in the design of steel cantilever beams, insufficient strength and rigidity of the main structural elements, and construction workmanship errors.

Demands and distribution of hysteretic energy in moment resistant self-centering steel frames

  • Lopez-Barraza, Arturo;Ruiz, Sonia E.;Reyes-Salazar, Alfredo;Bojorquez, Eden
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1155-1171
    • /
    • 2016
  • Post-tensioned (PT) steel moment resisting frames (MRFs) with semi-rigid connections (SRC) can be used to control the hysteretic energy demands and to reduce the maximum inter-story drift (${\gamma}$). In this study the seismic behavior of steel MRFs with PT connections is estimated by incremental nonlinear dynamic analysis in terms of dissipated hysteretic energy ($E_H$) demands. For this aim, five PT steel MRFs are subjected to 30 long duration earthquake ground motions recorded on soft soil sites. To assess the energy dissipated in the frames with PT connections, a new expression is proposed for the hysteretic behavior of semi-rigid connections validated by experimental tests. The performance was estimated not only for the global $E_H$ demands in the steel frames; but also for, the distribution and demands of hysteretic energy in beams, columns and connections considering several levels of deformation. The results show that $E_H$ varies with ${\gamma}$, and that most of $E_H$ is dissipated by the connections. It is observed in all the cases a log-normal distribution of $E_H$ through the building height. The largest demand of $E_H$ occurs between 0.25 and 0.5 of the height. Finally, an equation is proposed to calculate the distribution of $E_H$ in terms of the normalized height of the stories (h/H) and the inter-story drift.

Cable-pulley brace to improve story drift distribution of MRFs with large openings

  • Zahrai, Seyed Mehdi;Mousavi, Seyed Amin
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.863-882
    • /
    • 2016
  • This study aims to introduce a new bracing system by which even super-wide frames with large openings can be braced. The proposed system, hereafter called Cable-Pulley Brace (CPB), is a tension-only bracing system with a rectilinear configuration. In CPB, a wire rope passes through a rectilinear path around the opening(s) and connects the lower corner of the frame to its opposite upper one. CPB is a secondary load resisting system with a nonlinear-elastic hysteretic behavior due to its initial pre-tension load. As a result, the required energy dissipation would be provided by the MRF itself, and the main intention of using CPB is to contribute to the initial and post-yield stiffness of the whole system. Using a stiffness calibration technique, optimum placement of the CPBs is discussed to yield a uniform displacement demand along the height of the structure. A displacement-based design procedure is proposed by which the MRF with CPB can be designed to achieve a uniform distribution of inter-story drifts with predefined values. Obtained results indicated that CPB leads to significant reductions in maximum and residual deformations of the MRF at the expense of minor increase in the maximum base shear and developed axial force demands in the columns. In the case of a typical 5-story residential building, compared to SMRF system, CPB system reduces maximum amounts of inter-story and residual drifts by 35% and 70%, respectively. Moreover, openings of the frame are not interrupted by the CPB. This is the most appealing feature of the proposed bracing system from architectural point of view.

A new steel panel zone model including axial force for thin to thick column flanges

  • Mansouri, Iman;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.417-436
    • /
    • 2014
  • During an earthquake, steel frame columns can be subjected to high axial forces combined with inelastic rotation demand resulting from story drift. Generally, the whole beam or component can be represented with one element. In elasto-plastic analysis, subdivision is necessary if the plastic deformation occurs within two ends of beams. If effects of the joint panel are necessarily considered in the analysis, the joint panel should be represented with an independent element. It is a special element to represent the shear deformation of the joint panel in the beam-column connection zone. Several analytical models for panel zone (PZ) behavior exist, in terms of shear force-shear distortion relationships. Among these models, the Krawinkler PZ model is the most popular one which is used in the AISC code. Some studies have pointed out that Krawinkler's model gives good results for the range of thin to medium column flanges thickness. This paper, introduces a new model to estimate the response of shear force-shear distortion for the PZ including column axial force. The model is applicable to both thin and thick column flange. To achieve an appropriate PZ mathematical model first, the effects of PZ strength and stiffness on connection response are parametrically studied using finite element models. More than one thousand and four-hundred beam-column connections are included in the parametric study, with varied parameters; then based on analytical results a simple mathematical model is presented. A comparison between the results of proposed method herein with FE analyses shows the average error especially in thick column flange is significantly reduced which demonstrates the accuracy, efficiency, and simplicity of the proposed model.

Nonlinear Analysis of FRP Strengthened Reinforced Concrete Columns by Force-Based Finite Element Model (하중기반 유한요소모델에 의한 FRP 보강 철근콘크리트 기둥의 비선형 해석)

  • Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.529-537
    • /
    • 2013
  • The aim of the current study is to develop a nonlinear isoparametric layered frame finite element (FE) analysis of FRP strengthened reinforced concrete (RC) beam or column members by a force-based FE formulation. In sections, concrete is modeled in the triaxial stress-strain relationship state and the FRP sheet is modeled as layered composite materials in two-dimension. The element stiffness matrix derived by the force-based FE has the force-interpolation functions without assuming the displacement shape functions. A lateral load test of RC column strengthened by GFRP sheets was analyzed by the developed force-based FE model. From comparative studies of the experimental and analysis results, it was shown to compare with the stiffness FE method that the force-based FE analysis could give more accurate predictions in the overall lateral load-deflection response as well as in nonlinear deformations and damages in the column plastic hinge region.

Analysis and design of demountable steel column-baseplate connections

  • Li, Dongxu;Uy, Brian;Aslani, Farhad;Patel, Vipul
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.753-775
    • /
    • 2016
  • This paper aims to investigate the demountability of steel column-baseplate connections subjected to monotonic and cyclic loading. This paper presents the finite element analysis of steel column-baseplate connections under monotonic and cyclic loading. The finite element model takes into account the effects of material and geometric nonlinearities. Bauschinger and pinching effects were also included in the developed model, through which degradation of steel yield strength in cyclic loading can be well simulated. The results obtained from the finite element model are compared with the existing experimental results. It is demonstrated that the finite element model accurately predicts the initial stiffness, ultimate bending moment strength of steel column-baseplate connections. The finite element model is utilised to examine the effects of axial load, baseplate thickness, anchor bolt diameter and position on the behaviour of steel column-baseplate connections. The effects of various parameters on the demountability of steel column-baseplate connections are investigated. To achieve a demountable and reusable structure, various design parameters need to be considered. Initial stiffness and moment capacity of steel columnbaseplate connections are compared with design strengths from Eurocode 3. The comparison between finite element analysis and Eurocode 3 indicates that predictions of initial stiffness for semi-rigid connections should be developed and improved design of the connections needs to be used in engineering practice.

Experimental study on hysteretic behavior of steel moment frame equipped with elliptical brace

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.891-907
    • /
    • 2020
  • Many studies reveal that during destructive earthquakes, most of the structures enter the inelastic phase. The amount of hysteretic energy in a structure is considered as an important criterion in structure design and an important indicator for the degree of its damage or vulnerability. The hysteretic energy value wasted after the structure yields is the most important component of the energy equation that affects the structures system damage thereof. Controlling this value of energy leads to controlling the structure behavior. Here, for the first time, the hysteretic behavior and energy dissipation capacity are assessed at presence of elliptical braced resisting frames (ELBRFs), through an experimental study and numerical analysis of FEM. The ELBRFs are of lateral load systems, when located in the middle bay of the frame and connected properly to the beams and columns, in addition to improving the structural behavior, do not have the problem of architectural space in the bracing systems. The energy dissipation capacity is assessed in four frames of small single-story single-bay ELBRFs at ½ scale with different accessories, and compared with SMRF and X-bracing systems. The frames are analyzed through a nonlinear FEM and a quasi-static cyclic loading. The performance features here consist of hysteresis behavior, plasticity factor, energy dissipation, resistance and stiffness variation, shear strength and Von-Mises stress distribution. The test results indicate that the good behavior of the elliptical bracing resisting frame improves strength, stiffness, ductility and dissipated energy capacity in a significant manner.

Shake-table study of plaster effects on the behavior of masonry-infilled steel frames

  • Baloevic, Goran;Radnic, Jure;Grgic, Nikola;Matesan, Domagoj
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • The effects of plaster on the behavior of single-story single-bay masonry-infilled steel frames under in-plane base accelerations have been experimentally investigated by a shake-table. Tested structures were made in a 1/3 scale, with realistic material properties and construction methods. Steel frames with high and low flexural rigidity of beams and columns were considered. Each type of frame was tested with three variants of masonry: (i) non-plastered masonry; (ii) masonry infill with conventional plaster on both sides; and (iii) masonry infill with a polyvinyl chloride (PVC) net reinforced plaster on both sides. Masonry bricks were made of lightweight cellular concrete. Each frame was firstly successively exposed to horizontal base accelerations of an artificial accelerogram, and afterwards, to horizontal base accelerations of a real earthquake. Characteristic displacements, strains and cracks in the masonry were established for each applied excitation. It has been concluded that plaster strengthens the infill and prevents damages in it, which results in more favorable behavior and increased bearing capacity of plastered masonry-infilled frames compared to non-plastered masonry-infilled frames. The load-bearing contribution of the adopted PVC net in the plaster was not noticeable for the tested specimens, probably due to relative small cross section area of fibers in the net. Behavior of masonry-infilled steel frames significantly depends on frame stiffness. Strong frames have smaller displacements than weak frames, which reduces deformations and damages of an infill.

Incremental dynamic analyses of concrete buildings reinforced with shape memory alloy

  • Mirtaheri, Masoud;Amini, Mehrshad;Khorshidi, Hossein
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.95-105
    • /
    • 2017
  • The use of superelastic shape memory alloys (SMAs) as reinforcements in concrete structures is gradually gaining interest among researchers. Because of different mechanical properties of SMAs compared to the regular steel bars, the use of SMAs as reinforcement in the concrete may change the response of structures under seismic loads. In this study, the effect of SMAs as reinforcement in concrete structures is analytically investigated for 3-, 6- and 8-story reinforced concrete (RC) buildings. For each concrete building, three different reinforcement details are considered: (1) steel reinforcement (Steel) only, (2) SMA bar used in the plastic hinge region of the beams and steel bar in other regions (Steel-SMA), and (3), beams fully reinforced with SMA bar (SMA) and steel bar in other regions. For each case, columns are reinforced with steel bar. Incremental Dynamic Analyses (IDA) are performed using ten different ground motion records to determine the seismic performance of Steel, Steel-SMA and SMA RC buildings. Then fragility curves for each type of RC building by using IDA results for IO, LS and CP performance levels are calculated. Results obtained from the analyses indicate that 3-story frames have approximately the same spectral acceleration corresponding with failure of frames, but in the cases of 6 and 8-story frames, the spectral acceleration is higher in frames equipped with steel reinforcements. Furthermore, the probability of fragility in all frames increases by the building height for all performance levels. Finally, economic evaluation of the three systems are compared.