• Title/Summary/Keyword: Composite bushing

Search Result 24, Processing Time 0.02 seconds

Tracking and erosion resistance of polymer for outdoor high voltage insula (초고압 옥외 절연용 고분자 재료의 트래킹 열화특성)

  • Han, Dong-Hee;Park, Hoy-Yul;Kang, Dong-Pil;Kim, In-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1578-1580
    • /
    • 1999
  • Silicone rubber is being used for the housing material of outdoor high voltage insulators such as composite insulator, bushing, surge arrestor and cable terminator because of good tracking and erosion resistance, good hydrophobicity and recovery of hydrophobicity, and chemical stability. In this paper, tracking and erosion resistance of silicone rubber having fluids and different ATH contents were examined. Fluids were selected under the consideration of their molecular weight and chemical structure, expecting the high migration rate, the good pollutant encapsulation, and the long period with good hydrophobicity. Good tracking and erosion resistance and arc resistance have been achieved for the silicone rubber above ATH content 130 phr.

  • PDF

Massless Links with External Forces and Bushing Effect for Multibody Dynamic Analysis

  • Sohn, Jeong-Hyun;Yoo, Wan-Suk;Hong, Keum-Shik;Kim, Kwang-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.810-818
    • /
    • 2002
  • When the contribution of lightweight components to the total energy of a system is small, tole inertia effects are sometimes ignored by replacing them to massless links. For example, a revolute-spherical massless link generates two kinematic constraint equations between adjacent bodies and allows four relative degrees of freedom. In this paper, to implement a massless link systematically in a computer program using the velocity transformation technique, the velocity transformation matrix of massless links is derived and numerically implemented. The velocity transformation matrix for a revolute-spherical massless link and a revolute-universal massless link are appeared as a 6$\times$4 matrix and a 6$\times$3 matrix, respectively. A massless link model in a suspension composite joint transmitting external forces is also developed and the numerical efficiency of the proposed model is compared to a conventional multibody model. For a massless link transmitting external forces, forces acting on links are resolved and transmitted to the attached points with a quasi-static assumption. Numerical examples are presented to verify the formulation.

Preparation and Characterization of Inorganic Continuous Fibers from Korean Basalt and Quartz Diorite Porphyry (국내산 현무암과 맥반석으로부터 무기질 연속섬유 제조와 그 특성)

  • Kim, jae-Keun;Bae, Ji-Soo;Na, Sang-Moon;Kim, Seung-Il;Jin, Yong-Jun
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.32-37
    • /
    • 2006
  • This paper summarizes the processing inorganic continuous fibers from Korean minerals. Continuous filament fibers have been produced from two rocks, basalt and quartz diorite porphyry(QDP), by melting method. The essence of the method is that the vitrified materials was placed into the bushing, platinum/rhodium alloy crucible with a nozzle, and heated electrically to a temperature which allowed fiber spinning. Vitrified basalt without additive was suitable for producing continuous filament fiber. However doping quartz diorite porphyry with boric oxide yielded a material which could be pulled continuously.

Studies on the Melting Characterization of Basalt and its Continuous Fiber Spinning (현무암의 용융특성과 연속섬유 방사 연구)

  • Park, Hye-Jung;Park, Sun-Min;Lee, Jae-Won;Roh, Gwang-Chul;Kim, Jae-Keun
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.43-49
    • /
    • 2010
  • Basaltic fiber was prepared by continuous spinning process from Jeju Pyosun raw basalt materials. First, for confirming the melting characterization of basalt, basalt raw material put into Pt crucible and melted up to $1550^{\circ}C$ then quenched by dropping it into water. After quenching, the optimum fiber spinning conditions were investigated by measurement and analysis of XRD, TMA, high temperature viscosity, high temperature conductivity and high temperature microscope. The optimum spinning temperature and viscosity for preparation of continuous filament fiber were $1264^{\circ}C$ and $10^{2.8}$ poise at $1264^{\circ}C$, respectively. Properties of prepared spinning fiber were confirmed by tensile strength, FE-SEM, heat resisting test and others. The tensile strength of fiber prepared by spinning conditions of the bushing temperature $1240^{\circ}C$ and winder speed 4600rpm was 3660MPa.