• Title/Summary/Keyword: Composite bone plate

Search Result 17, Processing Time 0.023 seconds

A Basic Design and Characterization on Composite Bone Plate for Bone Fracture Healing (골절 치료를 위한 복합재료 고정판 기초 설계 및 특성 평가)

  • Kim, Ju-Ho;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.7-12
    • /
    • 2007
  • This paper aims to enhance the efficiency of bone fracture healing with bone plate made of fiber reinforced composite materials. The composite bone plate was designed as the same dimension and shape as the existing stainless steel bone plate. To find out the appropriate stacking sequence of the composite bone plate the variations of strain distributions were calculated using FE analysis when the bone plates were applied to the fracture site. From the analysis result it was found that the composite bone plate whose Young's modulus is lower than that of metal bone plate gave more uniform strain distribution and provided appropriate condition for callus formation and its development.

Finite element analysis of callus generation in fractured bones according to the strain distribution (골절부 변형률에 따른 골절부 가골 형성 과정의 유한요소해석)

  • Kim, Suk-Hun;Park, Myong-Gil;An, Song-Tao;Cho, Sung-Kyum;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.29-34
    • /
    • 2009
  • In this paper, finite element analyses were used to estimate the strain distribution at the fracture site of a tibia bone. A stainless steel bone plate and various composite bone plates were considered to find out the best conditions for callus generation while bone fracture was cured for 16 weeks. Through this research, the appropriate load condition which makes the strains between the appropriate range($2{\sim}10%$) was sought. From this analysis, it was found that lower level of external load is needed for the appropriate strain for the case of composite bone plate application and it was also found that the composite bone plate had potential advantages for effective bone fracture healing relieved stress shielding effect.

Design and stress analysis of femur bone implant with composite plates

  • Ramakrishna, S.;Pavani, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.37-50
    • /
    • 2020
  • Development of lightweight implant plates are important to reduce the stress shielding effect for a prosthesis of femur bone fractures. Stainless steel (SS-316L) is a widely used material for making implants. Stress shielding effect and other issues arise due to the difference in mechanical properties of stainless steel when compared with bone. To overcome these issues, composite materials seem to be a better alternative solution. The comparison is made between two biocompatible composite materials, namely Ti-hydroxyapatite and Ti-polypropylene. "Titanium (Ti)" is fiber material while "hydroxyapatite" and "polypropylene" are matrix materials. These two composites have Young's modulus closer to the bone than stainless steel. Besides the variety of bones, present paper constrained to femur bone analysis only. Being heaviest and longest, the femur is the most likely to fail among all bone failures in human. Modelling of the femur bone, screws, implant and assembly was carried out using CATIA and static analysis was carried out using ANSYS. The femur bone assembly was analyzed for forces during daily activities. Ti-hydroxyapatite and Ti-polypropylene composite implants induced more stress in composite implant plate, results less stress induced in bone leading to a reduction in shielding effect than stainless steel implant plate thus ensuring safety and quick healing for the patient.

Finite element analysis on bio-mechanical behavior of composite bone plate for healing femur fracture considering contact conditions (접촉조건을 고려한 대퇴골 치료용 복합재료 고정판의 생체 역학적 거동에 관한 유한요소해석)

  • Kim, Suk-Hun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, finite element analyses for estimating the behavior of fractured femur just after the operation were carried out by using ABAQUS 6.71. A stainless steel bone plate and composite bone plates with various stacking angles were considered to find out the effect of bone plate properties on bone fracture healing. In order to simulate the actual state, contact conditions between the plate and bone and fractured bones were imposed on the finite element models and the whole analysis was divided by two steps; screw fastening step and load bearing step. The stress and strain distributions at the fracture site for the cases of the stainless steel and composite bone plates were analyzed and compared with. From the analyses it was found that the composite bone plate had potential advantages for effective bone fractures healing relieving stress shielding effect.

Fatigue Characterization of Glass/Polypropylene Composite Bone Plates Locked with an Artificial Tibia under Moisture Environment (인조골에 체결된 유리섬유/폴리프로필렌 복합재료 고정판의 수분 환경 피로 특성)

  • Han, Min-Gu;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.328-333
    • /
    • 2013
  • In this study, bone plate made of glass/polypropylene composite material which was applied to an artificial bone was tested to check the service ability under fatigue loading. To check serviceability of composite bone plates fatigue test was carried out considering changes in the moisture absorption rate, locking position of screws and loading condition. Test results showed that all the tested specimens had the fatigue life more than one million cycles which was much higher fatigue life than the expected value of 650,000 cycles. Screw position was not critical impact on the deformation of the fracture site. In this paper, the mechanical performance of the glass/polypropylene composite was verified by fatigue test under various water absorption conditions, and this result may give useful information on the design of composite bone plate.

A basic study on the prediction of local material behavior of composite bone plate for metaphyseal femur fractures (대퇴골 골 간단 부 골절치료용 복합재료 고정판의 국부적 거동 예측을 위한 기초 연구)

  • Yoo, Seong-Hwan;Son, Dae-Sung;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.6-11
    • /
    • 2011
  • This paper presents an estimating method for local property changes and failure prediction of composite materials experiencing large shear deformation during draping process. The bone plate for the metaphyseal femur fracture was chosen to apply the presented method because it has complex geometry. The local property changes due to macro-/microscopic deformations of fabric composites during draping process were evaluated by various tests and the result was applied to predict static/fatigue behaviors of the bone plate. This paper was expected to present useful information on the design of composite structures with complex geometry and their performance evaluation.

A Study on Biomimetic Composite for Design of Artificial Hip Joint (인공 관절 설계를 위한 바이오미메틱 복합재료에 관한 연구)

  • 김명욱;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.234-238
    • /
    • 1999
  • This study suggests the design of the functionally gradient composite, [0/90/0/core]$_s$ cross-ply laminate, to prevent stress concentration induced from the difference of rigidity between the bone and the artificial hip joint and to reinforce the wear property of the surface and the expectation of their mechanical properties. First, the four-point bending test is done about wet bones and dry bones to know the mechanical properties of the cortical bones. In result, the wet bone shows the viscoelastic behavior and the dry bone shows the elastic behavior. Moreover, we expect the properties of the proposed gradient composites as a function of carbon fiber volume fraction in each layer to apply Halpin-Tsai equation, CLPT(classical laminate plate theory), and Bernoulli beam theory etc. and decide the thickness ratio of each lamina in order to match Young's modulus of the anisotropic cortical bone with the proposed gradient composites.

  • PDF

Fabrication and characterization of PCL/TCP-coated PHBV composite multilayer as a bone plate

  • Kim, Yang-Hee;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.39.2-39.2
    • /
    • 2009
  • In this work, Poly($\varepsilon$-Caprolactone)(PCL) andpoly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) mats were fabricated usingelectrospinning process. The electrospinning process is a simple and efficient method to fabricate the nanofibrous mats. PCL and PHBV is a kind of biodegradable polymer but their mechanical properties aren't good. For improving mechanical properties, PHBV mats were coated by TCP. Using PCL mats and TCP-coated PHBV composite mats, a bio-resorbablebone plate were made by pressing. Detailed micro-structural characterization was done by SEM techniques. Tensile strength and bending strength were also evaluated for mechanical properties. The cytotoxicity evaluation ofPCL/TCP-coated PHBV composite multilayer was done by MTT assay. The evidence obtained in this work implies the potential for use as a biodegradable boneplate.

  • PDF

A study on the forming condition of a bone plate made of a glass/polypropylene composite (Twintex) (유리섬유/폴리프로필렌 복합재료 (Twintex)를 이용한 고정판 성형조건에 관한 연구)

  • Park, Seok-Won;Yoo, Seong-Hwan;Lee, Jae-Eung;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.55-60
    • /
    • 2010
  • In this paper, tensile and bending tests of glass/polypropylene composite (Twintex) specimens fabricated by various forming conditions were carried out and the results were compared according to the forming conditions to find the appropriate condition for the forming composite bone plates. From the tests it was found that the most appropriate forming conditions were $230^{\circ}C$, 3MPa. Composite bone plates were formed using this condition by two different fabricating methods for screw holes: one was a net shape molding and the other was drilling. The forming and bending tests revealed that the drilling process provided much better bending stiffness of bone plates. This paper provided the most appropriate condition for forming composite bone plates and this result was also expected to offer informative data on forming of other Twintex structures.

Behavior Analysis of the Treated Femur and Design of Composite Hip Prosthesis (대퇴부 거동 해석 및 복합재료 보철물 설계)

  • 임종완;하성규
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.119-130
    • /
    • 2002
  • The nonlinear finite element program has been developed to analyze the design performance of an artificial hip prosthesis and long term behavior of a treated femur with stems made of composite material after cementless total hip arthroplasty(THA). The authors developed the three dimentional FEM models of femoral bone with designed composite stem which was taken with elliptic cross section of 816 brick elements under hip contact load and muscle farce in simulating single leg stand. Using the program, density changes, stress distributions and micromotions of the material femoral bone were evaluated by changing fiber orientation of stems for selected manufacturing method such as plate cut and bend mold. The results showed that the composite materials such as AS4/PEEK and T300/976 gave less bone resorption than the metallic material such as cobalt chrome alloy, titanium alloy and stainless steal. It was found that increasing the long term stability of the prosthesis in the femur could be obtained by selecting the appropriate ply orientation and stacking sequence of composite.