• Title/Summary/Keyword: Composite Wheel

Search Result 67, Processing Time 0.023 seconds

Evaluation of Hot Mix Asphalt Properties using Complex Modifiers (복합개질제를 이용한 아스팔트 혼합물의 물성 평가)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.146-152
    • /
    • 2018
  • In this study, to improve the performance of asphalt mixtures for plastic deformation occurring mainly in Korea, complex modifiers were prepared by mixing powders and liquid type modifiers. The main constituents were powdery diatomaceous earth, mica and carbon black, and liquid type solid 70% SBR latex. The tensile strength ratios for the two asphalt mixtures used in the test were above 0.80 for the Ministry of Land Transportation (2017) asphalt mixture production and construction guidelines. The effects of increasing the tensile strength in the dry state was more than 14% when the composite modifier was added. The deformation rate per minute by the wheel tracking test load was an average of 0.07 to 0.147 for each mixture. The strain rate per minute was improved by the modifier, and the dynamic stability was improved by almost 100% from 295 to 590. In addition, the final settling was reduced from 11.38 mm to 9.57 mm. A plastic deformation test using the triaxial compression test showed that the amount of deformation entering the plastic deformation failure zone at the end of the second stage section and in the third stage plastic deformation section was 1.76 mm for the conventional mixture and 1.50 mm for the complex modifier mixture. The average slope of the complex modifier asphalt mixture mixed with the multi-functional modifier was 0.005 mm/sec. The plastic deformation rate is relatively small in the section where the road pavement exhibits stable common performance, i.e. the traffic load.

INFLUENCE OF THE COLOR OF COMPOSITE RESINS APPLIED TO LINGUAL SURFACE ON THE LABIAL TOOTH COLOR (설측 복합레진 색상이 치아 순측 색상에 미치는 영향)

  • Mun, Seung-Hui;Park, Su-Jung;Cho, Hyun-Gu;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.309-323
    • /
    • 2009
  • In this study we evaluated the influence of both the thickness of residual enamel and the color of the composite resins applied to lingual surface on the labial surface color. Background plates were made by randomly (A1, A2, A6D, B1, B2, B3, C1, C2, C6D) selected colors of Filtek Supreme (3M ESPE, St. Paul, U.S.A.) composite resin. Crown portion of 9 maxillary central incisors were cut off and embedded with acrylic resin except labial surface. Samples of average thickness of 2.2 mm were obtained after cutting it in a thickness of 2.5 mm from the labial surface and sandpaper polish. The shade of composite resin background was measured using Spectrophotometer ($Spectrolino^{(R)}$, GretagMacbeth, Regensdorf, Switzerland). And CIE $L^{\ast}a^{\ast}b^{\ast}$value of 2.2 mm thickness tooth samples were measured on the 9 composite resin backgrounds. And then, the cutting side of tooth samples was ground to the extent of 1.9 mm, 1.6 mm, 1.3 mm, 1.0 mm and placed on composite resin backgrounds and measured $L^{\ast}a^{\ast}b^{\ast}$values with the same method. In all samples, $L^{\ast}$value and $b^{\ast}$value seemed to have a tendency of decreasing as thickness of tooth sample becomes thinner regardless of background colors (p < 0.05). But, $a^{\ast}$value didn't show the significant differences depending on the thickness.

SHEAR BOND STRENGTH AND MICROLEAKAGE OF COMPOSITE RESIN ACCORDING TO TREATMENT METHODS OF CONTAMINATED SURFACE AFTER APPLYING A BONDING AGENT (접착제 도포후 오염된 표면의 처리방법에 따른 복합레진의 전단결합강도와 미세누출)

  • Park, Joo-Sik;Lee, Suck-Jong;Moon, Joo-Hoon;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.647-656
    • /
    • 1999
  • The purpose of this study was to investigate the shear bond strength and marginal microleakage of composite to enamel and dentin according to different treatment methods when the applied bonding agent was contaminated by artificial saliva. For the shear bond strength test, the buccal and occlusal surfaces of one hundred twenty molar teeth were ground to expose enamel(n=60) and dentin surfaces(n=60). The specimens were randomly assigned into control and 5 experimental groups with 10 samples in each group. In control group, a bonding system(Scotchbond$^{TM}$ Multi-Purpose plus) and a composite resin(Z-100$^{TM}$) was bonded on the specimens according to manufacture's directions. Experimental groups were subdivided into 5 groups. After polymerization of an adhesive, they were contaminated with at artificial saliva on enamel and dentin surfaces: Experimental group 1 ; artificial saliva was dried with compressed air. Experimental group 2 ; artificial saliva was rinsed with air-water spray and dried. Experimental group 3 ; artificial saliva was rinsed, dried and applied an adhesive. Experimental group 4 ; artificial saliva was rinsed, dried, and then etched using phosphoric acid followed by an adhesive. Experimental group 5, artificial saliva was rinsed, dried, and then etched with phosphoric acid followed by consecutive application of both a primer and an adhesive. Composite resin(Z-100$^{TM}$) was bonded on saliva-treated enamel and dentin surfaces. The shear bond strengths were measured by universal testing machine(AGS-1000 4D, Shimaduzu Co. Japan) with a crosshead speed of 5mm/minute under 50kg load cell. Failure modes of fracture sites were examined under stereomicroscope. The data were analyzed by one-way ANOVA and Tukey's test. For the marginal microleakage test, Class V cavities were prepared on the buccal surfaces of sixty molars. The specimens were divided into control and experimental groups. Cavities in experimental group were contaminated with artificial saliva and those surfaces in each experimental groups received the same treatments as for the shear test. Cavities were filled with Z-100. Specimens were immersed in 0.5% basic fuchsin dye for 24 hours and embedded in transparent acrylic resin and sectioned buccolingually with diamond wheel saw. Four sections were obtained from the one specimen. Marginal microleakages of enamel and dentin were scored under streomicroscope and averaged from four sections. The data were analyzed by Kruskal-Wallis test and Fisher's LSD. The results of this study were as follows. 1. The shear bond strength to enamel showed lower value in experimental group 1(13.20${\pm}$2.94MPa) and experimental group 2(13.20${\pm}$2.94MPa) than in control(20.03${\pm}$4.47MPa), experimental group 4(20.96${\pm}$4.25MPa) and experimental group 5(21.25${\pm}$4.48MPa) (p<0.05). 2. The shear bond strength to dentin showed lower value in experimental group 1(9.35${\pm}$4.11MPa) and experimental group 2(9.83${\pm}$4.11MPa) than in control group(17.86${\pm}$4.03MPa), experimental group 4(15.04${\pm}$3.22MPa) and experimental group 5(14.33${\pm}$3.00MPa) (p<0.05). 3. Both on enamel and dentin surfaces, experimental group 1 and 2 showed many adhesive failures, but control and experimental group 3, 4 and 5 showed mixed and cohesive failures. 4. Enamel marginal microleakage was the highest in experimental group 1 and there was a significant difference in comparison with other groups (p<0.05). 5. Dentin marginal microleakages of experimental group 1 and 2 were higher than those of other groups (p<0.05). This result suggests that treatment methods, re-etching with 35% phosphoric acid followed by re-application of adhesive or repeating all adhesive procedures, will produce good effect on both shear bond strength and microleakage of composite to enamel and dentin if the polymerized bonding agent was contaminated by saliva.

  • PDF

Durability Test and Micro-Damage Formation of Rubber Hose for Automotive Hydraulic Brake (자동차 유압브레이크용 고무호스의 내구성 시험 및 미세손상에 관한 연구)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Lim, Young-Han
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • Rubber hose assembly for automotive hydraulic brake during operation is subject to combined stresses of cyclic pressure, cyclic bending and torsion as well as thermal load. The rubber hose is composed of ethylene-propylene diene monomer(EPDM) rubber layers reinforced by polyvinyl acetate(PVA) braided fabrics. A durability tester with loading rigs for inducing the above cyclic stresses was used to investigate failure mechanisms in the rubber hose assembly. Failure examination was performed at every 100 thousands cycles of bending and torsion. Hose samples were sectioned with a diamond-wheel cutter and then polished. The polished surface was observed by optical microscope and scanning electron microscope (SEM). Some interfacial delamination with a length of about 1mm along the interface between EPDM rubber and PVA fabrics was shown at the test cycles of 400,000. The delamination induced some cracking into the outer rubber skin layer to leading the final rupture of the hose.

The Need for Weight Optimization by Design of Rolling Stock Vehicles

  • Ainoussa, Amar
    • International Journal of Railway
    • /
    • v.2 no.3
    • /
    • pp.124-126
    • /
    • 2009
  • Energy savings can be achieved with optimum energy consumptions, brake energy regeneration, efficient energy storage (onboard, line side), and primarily with light weight vehicles. Over the last few years, the rolling stock industry has experienced a marked increase in eco-awareness and needs for lower life cycle energy consumption costs. For rolling stock vehicle designers and engineers, weight has always been a critical design parameter. It is often specified directly or indirectly as contractual requirements. These requirements are usually expressed in terms of specified axle load limits, braking deceleration levels and/or demands for optimum energy consumptions. The contractual requirements for lower weights are becoming increasingly more stringent. Light weight vehicles with optimized strength to weight ratios are achievable through proven design processes. The primary driving processes consist of: $\bullet$ material selection to best contribute to the intended functionality and performance $\bullet$ design and design optimization to secure the intended functionality and performance $\bullet$ weight control processes to deliver the intended functionality and performance Aluminium has become the material of choice for modern light weight bodyshells. Steel sub-structures and in particular high strength steels are also used where high strength - high elongation characteristics out way the use of aluminium. With the improved characteristics and responses of composites against tire and smoke, small and large composite materials made components are also found in greater quantities in today's railway vehicles. Full scale hybrid composite rolling stock vehicles are being developed and tested. While an "overdesigned" bodyshell may be deemed as acceptable from a structural point of view, it can, in reality, be a weight saving missed opportunity. The conventional pass/fail structural criteria and existing passenger payload definitions promote conservative designs but they do not necessarily imply optimum lightweight designs. The weight to strength design optimization should be a fundamental design driving factor rather than a feeble post design activity. It should be more than a belated attempt to mitigate against contractual weight penalties. The weight control process must be rigorous, responsible, with achievable goals and above all must be integral to the design process. It should not be a mere tabulation of weights for the sole-purpose of predicting the axle loads and wheel balances compliance. The present paper explores and discusses the topics quoted above with a view to strengthen the recommendations and needs for the weight optimization by design approach as a pro-active design activity for the rolling stock industry at large.

  • PDF

THE EFFECT OF SANDWICH TECHNIQUE USING FLOWABLE COMPOSITE RESIN BASE ON THE MICROLEAKAGEIN CLASS II CAVITIES OF MOLAR (구치부 제2급 와동에서 고흐름성 복합레진을 이용한 적층 충전술식의 미세누출에 미치는 영향)

  • Lee, Kang;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.5
    • /
    • pp.502-514
    • /
    • 2002
  • The aim of this study was to evaluate the marginal adaptation of direct class II sandwich restoration with packable composites(P-60), resin modified glass ionomer cement(Fuji-II LC), flowable compomer(Dyract Flow), flowable composites(Filtek Flow) in comparison with total bond restorations. In addition, for sandwich restorations, influence of different sandwich techniques was also evaluated. Large butt-joint box typed class II cavites with cervical margins 1mm below the cemento-enamel junction were cut into 70 extracted human molars. The cavities(7 groups, n=10) were filled using a closed/open sandwich restoration or total bond restoration technique with materials according to the manufacturer's recommandation using the single-component bonding agent for each system. Teeth were thermocycled 500 times between 5$^{\circ}C$ and 55$^{\circ}C$ with 30-second dwell time. The teeth were then coated with nail polish 1mm short of the restoration, placed in a 2% methylene blue for 24 hours, and sectioned with diamond wheel. Sections were examined with a stereoscope to determine the extent of microleakage. Dentine /Cementum margins were analyzed for microleakage on scale of 0(no leakage) to 4(entire axial wall) and interface between materials, on scale of 0(no leakage) to 3(axial wall). Results were evaluated with Kruskal Wallis Test, corrected for ties, to determine whether there were statistically significant differences among the seven groups. Pairs of groups were analyzed using the Student-Newman-Keuls Method and Dunn s Method. The results were as follows : 1. All groups showed some micoleakage in cervical portion. But there were no microleakage in interface between materials. 2. Closed sandwich restorations with Fuji-II LC and Filtek Flow had significantly lower leakage rating than total restorations with only P-60. However, open sandwich restorations with Dyract Flow showed significantly higher (P<0.05) 3. Closed sandwich restorations had significantly lower leakage rating than total restorations. However open sandwich restoration s showed significantly higher (P<0.05). 4. Sandwich restorations with Fuji-II LC were iou$.$or leakage than only P-60. Filtek Flow, Dyract Flow. But there were no statistically differences among the materials. From the results above, it could be concluded, closed sandwich restorations was effective in reducing microleakage of class II restorations. The best results showing the least microleakage were for the closed sandwich technique with Fuji-II LC and Filtek Flow.

Distribution of Wheel Loads on Curved Steel Box Girder Bridges (곡선 강상자형교의 윤하중 분배)

  • Kim, Hee-Joong;Lee, Si-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • In the case of horizontally curved bridges, the use of curved composite box girder bridges are increased due to its functionality and for aesthetical reason. As it compared with the open section, the steel box girder bridges have advantages to resistant of distortion and corrosion. In practice the grid analysis is conducted by utilizing only the cross beam. Since the stiffness of the concrete slab is not included in the grid analysis, the cross beam is induced the distribution of the live load. In this study the affects of the radius of curvature, the number of diaphragm and cross beam to the load distribution of the curved steel box girder bridge was investigated by applying the finite element method. The results indicate that the curvature of curved bridge had a large affect of the load distribution and as the curvature was increased the load distribution factor was increased. A single diaphragm at the center of girder is important role for the load distribution effects and structural stability, but additional diaphragm did not affect it as much. The affects of the cross beam to the load distribution were investigated and its influence was minor. It can be safely concluded that the addition of cross beam does not aid the purpose of the live load distribution. And the stiffness of concrete slab for the load distribution effects should be concerned in the design of curved steel box girder bridges.