기업들 간의 경쟁이 치열해짐에 따라 기업들은 최종 제품뿐만 아니라 최종 제품을 생산하는 프로세스에 대한 효율에 관심을 갖기 시작하였다. 또한 기업들은 자사의 핵심 역량을 중심으로 기업 구조를 재편하고, 핵심 역량 이외의 부분은 아웃소싱을 맡기고 있다. 이러한 상황에서 기업은 다양한 파트너들과 비즈니스 프로세스를 공유하고, 결합 관계에 따라 유연하게 구성할 수 있어야 한다. 기업의 비즈니스 프로세스에 대한 중요성을 일찍 깨닫고 많은 기업들이 프로세스 혁신 작업을 수행하였다. 몇몇 기업은 주목할만한 큰 성공을 거두었음에도 불구하고 기대했던 성과를 거두지 못한 체 많은 비용만 소모한 기업도 존재한다. 이와 같은 일들은 비즈니스 프로세스 디자인을 위한 방법에 대한 개선이 필요함을 시사한다. 하지만 대부분의 방법은 프로세스 디자인을 시각화하고, 평가하는데 중점을 둔 분석 도구의 기능에 편중되어 있으며, 여전히 프로세스의 실제 디자인을 지원하는 형식적인 모델링에 대한 연구는 여전히 부족한 실정이다. 따라서 본 논문에서는 비즈니스 프로세스의 모델링의 응용 분야로 기업 어플리케이션 통합으로 각광받고 있는 웹 서비스를 선택, 웹 서비스로 이루어진 프로세스의 최적화된 디자인을 지원하는 수리 모델을 제시하고자 한다.
웹 서비스는 이질적인 응용 시스템들 사이의 연동 및 통합을 위한 표준화된 수단을 제공한다. 본 논문에서는 기존 웹 서비스들을 이용하여 정의되는 복합 웹 서비스를 효율적으로 실행하기 위한 방안으로서 사용자 에이전트를 이용한 분산 처리 시스템 구조 및 처리 방법을 제안한다. 본 시스템은 웹 서비스들의 통신 QoS 및 복합 웹 서비스의 부하 등을 고려하여 복합 웹 서비스의 호출 및 통합 작업을 사용자 에이전트에게 동적으로 위임하여 분산 처리함으로써 복합 웹 서비스의 성능 및 가용성을 향상시킨다.
최근 각 기업과 공공기관들의 서비스들은 웹 서비스 기반으로 구축되고 있다. 이러한 여러 서비스들을 혼합한 협업적 웹 서비스 환경에서 서비스에 대한 프로세스 관리, 서비스 상태 체크, 서비스 과금을 위한 과금 요소 추출등을 위한 모니터링이 필요하다. 이에 본 논문에서는 효과적인 모니터링을 위하여 이벤트 기반의 협업적 웹 서비스 관리 모니터링 구조와 방법을 제시한다. SOA (Service Oriented Architecture) 기반의 협업적 웹 서비스 개발 생명주기를 단계별로 검토하여 관리 모니터링의 관점에서 필요한 요구사항들을 찾아내고, 이를 기반으로 협업적 웹 서비스 관리를 위한 이벤트 기반의 관리 모니터링 시스템 아키텍처를 제시한다.
KIPS Transactions on Software and Data Engineering
/
v.2
no.5
/
pp.359-368
/
2013
Mashup is a web application that combines several different sources to create new services using Open APIs(Application Program Interfaces). Although the mashup has become very popular over the last few years, there are several challenging issues when combining a large number of APIs into the mashup, especially when composite APIs are manually integrated by mashup developers. This paper proposes a novel algorithm for automatic Open API composition. The proposed algorithm consists of constructing an operation connecting graph and searching composition candidates. We construct an operation connecting graph which is based on the semantic similarity between the inputs and the outputs of Open APIs. We generate directed acyclic graphs (DAGs) that can produce the output satisfying the desired goal. In order to produce the DAGs efficiently, we rapidly filter out APIs that are not useful for the composition. The algorithm is evaluated using a collection of REST and SOAP APIs extracted from ProgrammableWeb.com.
Park, Jeongyeon;Hong, Seungsik;Park, Mingyu;Lee, Hyun
The Journal of the Convergence on Culture Technology
/
v.7
no.4
/
pp.807-814
/
2021
As economic activities decrease, and the stock market decline due to COVID-19, many people are jumping into stock investment as an alternative source of income. As people's interest increases, many stock price analysis studies are underway to earn more profits. Due to the variance observed in the stock markets, it is necessary to analyze each stock independently and consistently. To solve this problem, we designed and implemented models and services that analyze stock prices using a reinforcement learning technique called Asynchronous Advantage Actor-Critic(A3C). Stock market data reflected external factors such as government bonds and KOSPI (Korea Composite Stock Price Index) as well as stock prices. Our proposed work provides a web service with a visual representation of predictions of stocks and stock information through which directions are given to investors to make safe investments without analyzing domestic and foreign stock market trends.
As the compact and easily accessible handheld devices, such as cellular phones and MP3 players equipped with image acquisition functionality, are becoming widely available among common users, various applications of images are rapidly increasing. Image related services and software such as web-based image presentation and image manipulation for personal or commercial purpose enable users to view contents of remote image archive and to manipulate enormous amount of images in local or network based storage as well. It is necessary for users to identify the images efficiently so that the same images are perceived as one physical entity instead of recognizing them as different images as the trends are getting stronger. In order to support this environment, we propose a method that generates image identifiers or indexing for images within a solid and efficient manner. The proposed image identifier utilizes multiple index values. The integration of component index values creates a unique composite value that can be used as a file name, file system identifier, or database index. Our experimental results on generation of constituent index values have shown favorable results.
Purpose: The purpose of this study is to investigate the problems experienced by Korean adolescents due to smartphone use and related factors. Methods: The subjects were 57,463 middle school and high school students nationwide as the 13th The Korea Youth Risk Behavior Web-Based Survey, 2017. Data were analyzed using means, standard deviations, and composite sample multiple logistic regression analysis. Results: This study confirms that negative experiences were related to general characteristics of sex, academic background, socio-economic level, residential area and form, academic performance, and parental education; health behavior characteristics of subjective health cognition, depression, and stress; and characteristics related to smartphone use. Smartphone usage time amd use of services were factors related to the problems experienced from using smartphones. Conclusion: Based on the results of this study, it is necessary to plan for the use of smartphones in consideration of physical and emotional health and to educate adolescents to promote social communication between family and friends. It is also necessary to develop and apply a smartphone use management program to maintain a balance between smartphone use, academic performance, and school life.
Composite and compact devices equipped with the functionality of digital still image acquisition, such as cellular phones and MP3 players are widely available to common users. In addition, the application of digital still images is becoming common among security and digital recording devices. The amount of still images, that are maintained or shared in personal storage or massive storage provided by various web services, are rapidly increasing. These still images are bound with file names or identifiers that are provided arbitrarily by users or that are generated from device specific naming method. However, those identifiers are vulnerable for unexpected changing or eliminating so that it becomes a problem in still image search or management. In this paper, we propose a method for still image identifier generation that is created from the still image internal information.
Delivery efficiency of e-learning media can be influenced by authoring processes. Generally, a moving picture recorded by video camera can be delivered to student by multimedia streaming service, using media server technology. A e-learning media authored by lecture authoring tool is played in a student application by download-based delivery system. Recently, some animation know-how are applied to author e-learning media by hand-operation. In this paper, we suggest a client-based streaming service for the e-leaning media consists of media files and integration data The lecture of e-learning media nay be divided into some time-based small blocks. Each blocks can be located distributed site. The student system gather those blocks by download-scheduling. This is a valid method for QoS guarantee streaming services. In addition to our study, lecturers can author composite e-learning media includes media files and dynamic web pages simply, The distributed e-learning media files of our study is managed by multi-author and updated rapidly.
Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.