• Title/Summary/Keyword: Composite Layer

Search Result 1,604, Processing Time 0.027 seconds

Ballistic Properties of Zr-based Amorphous Alloy Surface Composites Fabricated by High-Energy Electron-Beam Irradiation (고에너지 전자빔 투사방법으로 제조된 Zr계 비정질 합금 표면복합재료의 탄도충격 성능)

  • Do, Jeonghyeon;Jeon, Changwoo;Nam, Duk-Hyun;Kim, Choongnyun Paul;Song, Young Buem;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1047-1055
    • /
    • 2010
  • The objective of this study is to investigate the ballistic properties of Zr-based amorphous alloy surface composites fabricated by high-energy electron-beam irradiation. The mixture of Zr-based amorphous powders and $LiF+MgF_2$ flux powders was deposited on a pure Ti substrate, and then an electron beam irradiated this powder mixture to fabricate a one-layer surface composite. A four-layer surface composite, in which the composite layer thickness was larger than 3 mm, was also fabricated by irradiating the deposited powder mixture by an electron beam three times on the one-layer surface composite. The microstructural analysis results indicated that a small amount of fine crystalline particles were homogeneously distributed in the amorphous matrix of the surface composite layer. According to the ballistic impact test results, the surface composite layers effectively blocked a fast traveling projectile, while many cracks were formed at the composite layers, and thus the surface composite plates were not perforated. The surface composite layer containing ductile ${\beta}$ dendritic phases showed a better ballistic performance than the one without dendrites because dendritic phases hindered the propagation of shear bands or cracks.

Dielectric and Piezoelectric of Ceramic-Polymer Composite with Ceramic Particle Size (세라믹 분말 크기가 압전 세라믹-폴리머 복합체의 유전 및 압전 특성에 미치는 영향)

  • 이형규;김호기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.63-65
    • /
    • 1989
  • Piezoelectric BaTiO$_3$-polymer composite were investigated for dielectric and piezoelectric properties with the barium titanate active particle size. Under the condition of the same density and ceramic volume ratio of composite, the dielectric and piezoelectric constant of composite are increasing as the ceramic particle size in composite are increasing. The surface layer model was quoted to explain these phenomena in our system and experimentally confirmed. The connectivity parameter of modified cube model of composite was calculated from the dielectric constant variation as their particle size. The connectivity parameter X and Y were 77.8% and 98.9% respectively. It means that the barium titanate particle distribution in composite nearly approach to the parallel mode. It was experimentally confirmed that the surface layer has low dielectric and nonferroelectric properties. Dielectric constant and thickness of surface layer were calculated from the equivalent circuit of composite.

  • PDF

Effect of Silicon Nitride Whisker Content on the Flexural Strength of Silicon Nitride-Boron Nitride-Silicon Carbide Multi-Layer Composites

  • Park, Dong-Soo;Cho, Byung-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.832-836
    • /
    • 2003
  • Multi-layer ceramic composites were prepared by tape casting followed by hot pressing using silicon nitride layer with silicon nitride whiskers, silicon nitride layer with silicon carbide particles and boron nitride-alumina layer. The whiskers were aligned during the casting. As the whisker content of the silicon nitride layer was increased up to 10 wt%, the flexural strength of the multi-layer composite was increased. However, further increase of the whisker content in the layer resulted in a rapid decrease of the strength of the composite. The results suggest that the strength of multi-layer ceramic composite showing non-catastrophic failure behavior can be significantly improved by incorporating the aligned whiskers in the layers.

Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate

  • Kaci, D. Ait;Madani, K.;Mokhtari, M.;Feaugas, X.;Touzain, S.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.679-699
    • /
    • 2017
  • The aim of this study is to perform a finite element analysis of the Von Mises stresses distribution in the adhesive layer and of the J-Integral for a damaged plate repaired by a composite patch. Firstly, we study the effect of the fiber orientation, especially the position of the layers that have orientation angle different of $0^{\circ}$ from the first layer which is in all cases of our study oriented at ($0^{\circ}$) on the J-Integral. Secondly, we evaluate the effects of the mechanical properties of the patch and the use of a hybrid patch on the reduction of stresses distribution and J-Integral. The results show clearly that the stacking sequence for the composite patch must be selected to absorb optimally the stresses from the damaged area and to position the various layers of the composite under the first layer whose fibers orientation will remain in all cases equal to $0^{\circ}$. The use of a hybrid composite reduces significantly the J-Integral and the stresses in both damaged plate and the adhesive layer.

Structural Behavior of Glass-Fiber Reinforced Plastic Composite Pipes (유리섬유 강화플라스틱 복합관의 구조적 특성)

  • 연규석;김남길;조규우;김동준;최종윤;백종만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.822-827
    • /
    • 2003
  • This study was performed to evaluate the internal and external factors affecting external strength of the 3-layer polymer composite pipes made of polymer mortar and fiber-glass reinforced plastic. Twenty four sandwich type 3-layer polymer composite pipes were made of polymer mortar and fiber-glass reinforced plastic by centrifugal method. The objective of this study was to evaluate the effects the of polymer mortar thickness for and core fiber-glass contents per unit area on external strength of 3-layer polymer composite pipes. For the more economical and practical design of 3-layer polymer composite pipe, further study should be done for the various polymer mortar, fiber-glass and different ratio of the inside/outside FRP thickness.

  • PDF

Electric field strength effect on bi-stability of composite thin cylindrical shell with piezoelectric layer

  • Yaopeng Wu;Nan Zheng;Yaohuan Wu;Quan Yang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.571-578
    • /
    • 2024
  • The bistable thin cylindrical shell is developable structure with the ability to transition between its two stable configurations. This structure offers significant potential applications due to its excellent deformability. In this paper, the composite thin cylindrical shell consisting of the composite layer and the piezoelectric layer was investigated. The material and geometric parameters of the shell were found to influence its stable characteristics. The analysis model of the composite thin cylindrical shell incorporating the piezoelectric layer was developed, and the expressions for its strain energy were derived. By applying the minimum energy principle, the impact of the electric field intensity on the bi-stable behaviors of the cylindrical shell was analyzed. The results showed that the shell exhibited the bistability only under the appropriate electric field strength. And the accuracy of the theoretical prediction was verified by simulation experiments. This study provides an important reference for the application of deployable structures.

A Preliminary Study on the Development of a High Elastic Modulus and Low-Shrinkage Roller-Compacted Concrete Base for Composite Pavement (복합포장용 고탄성 저수축 롤러전압콘크리트 기층 개발을 위한 기초연구)

  • Chung, Gun Woo;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • PURPOSES : The main purpose of this study is to develop a high elastic modulus and low-shrinkage roller-compacted concrete base (RCCB) in order to prevent fatigue cracking and reflective cracking in the asphalt surface layer of composite pavement. Using a rigid base material with low shrinkage can be a solution to this problem. Moreover, a strong rigid base with high elastic modulus is able to shift the location of critical tensile strain from the bottom of the asphalt layer to the bottom of the rigid base layer, which can prevent fatigue cracking in the asphalt layer. METHODS : Sensitivity analysis of composite pavement via numerical methods is implemented to determine an appropriate range of elastic modulus of the rigid base that would eliminate fatigue cracking. Various asphalt thicknesses and elastic moduli of the rigid base are used in the analysis to study their respective influences on fatigue cracking. Low-shrinkage RCC mixture, as determined via laboratory testing with various amounts of a CSA expansion agent (0%, 7%, and 10%), is found to achieve an appropriate low-shrinkage level. Shrinkage of RCC is measured according to KS F 2424. RESULTS : This study shows that composite pavements comprising asphalt thicknesses of (h1) 2 in. with E2 > 19 GPa, 4 in. with E2 > 15 GPa, and 6 in. with E2 > 11 GPa are able to eliminate tensile strain in the asphalt layer, which is the cause of fatigue cracking in this layer. Shrinkage test results demonstrate that a 10% CSA RCC mixture can reduce shrinkage by 84% and 93% as compared to conventional RCC and PCC, respectively. CONCLUSIONS : According to the results of numerical analyses using various design inputs, composite pavements are shown to be able to eliminate fatigue cracking in composite pavement. Additionally, an RCC mixture with 10% CSA admixture is able to reduce or eliminate reflective cracking in asphalt surfaces as a result of the significant shrinkage reduction in the RCC base. Thus, this low-shrinkage base material can be used as an alternative solution to distresses in composite pavement.

Prediction of Dimensional Instability Resulting from Layer Removal of an Internally Stressed Orthotropic Composite Cylinder

  • Shin, Shang-Hyon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.757-761
    • /
    • 2002
  • When a layer of cylindrical composite component containing an axisymmetric residual stress state is removed from the inner or outer surface, the dimension of the remaining material changes to balance internal forces. Therefore, in order to machine cylindrical composite components within tolerances, it is important to know dimensional changes caused by residual stress redistribution in the body. In this study, analytical solutions for dimensional changes and the redistribution of residual stresses due to the layer removal from a residually stressed cylindrically orthotropic cylinder were developed. The cylinder was assumed to have axisymmetric radial, tangential and axial residual stresses. The result of this study is useful in cases where the initial residual stress distribution in the component has been measured by a non-destructive technique such as neutron diffraction with no information on the effect of layer removal operation on the dimensional changes.

Manufacturing and Properties of Al-Al2O3 Composite Coating Layer Using Warm Spray Process (Warm spray를 이용한 알루미늄-알루미나 복합 코팅층의 제조 및 특성)

  • Kwon, Eui-Pyo;Lee, Jong-Kweon
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.374-380
    • /
    • 2017
  • Properties of coatings produced by warm spray were investigated in order to utilize this technique as a repair method for Al tire molds. $Al-(0-10%)Al_2O_3$ composite powder was sprayed on Al substrate by warm spraying, and the microstructure and mechanical properties of the composite coating layer were investigated. For comparative study, the properties of the coating produced by plasma spray, which is a relatively high-temperature spraying process, were also investigated. The composite coating layers produced by the two spray techniques exhibited significantly different morphology, perhaps due to their different process temperatures and velocities of particles. Whereas the $Al_2O_3$ particles in the warm sprayed coating layer maintained their initial shape before the spray, flattened and irregular shape $Al_2O_3$ particles were distributed in the plasma sprayed coating layer. The coating layer produced by warm spray showed significantly higher adhesive strength compared to that produced by plasma spray. Hardness was also higher in the warm sprayed coating layer compared to the plasma sprayed one. Moreover, with increasing the fraction of $Al_2O_3$, hardness gradually increased in both spray coating processes. In conclusion, an $Al-Al_2O_3$ composite coating layer with good mechanical properties was successfully produced by warm spray.

Enhancing the static behavior of laminated composite plates using a porous layer

  • Yuan, Yuan;Zhao, Ke;Xu, Kuo
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.763-774
    • /
    • 2019
  • The main aim of this paper is enhancing design of traditional laminated composite plates subjected to static loads. In this regard, this paper suggests embedding a lightweight porous layer in the middle of laminated composite as the core layer of the resulted sandwich plate. The static responses of the suggested structures with uniform, symmetric and non-symmetric porosity distributions are compared to optimize their design. Using the first order shear deformation theories, the static governing equations of the suggested laminated composite plates with a porous layer (LCPPL) rested on two-parameter foundation are obtained. A finite element method is also utilized to solve the governing equations of LCPPLs. Effects of laminated composite and porosity characteristics as well as geometry dimension, edges' boundary conditions and foundation coefficients on the static deflection and stress distribution of the suggested composite plates have been investigated. The results reveal that the use of core between the layers of laminated composites leads to a sharp reduction in the static deflections of LCPPLs. Furthermore, in compare with perfect cores, the use of porous core between the layers of laminated composite plates can offer a considerable reduction in structural weight without a significant difference in their static responses.