• Title/Summary/Keyword: Composite Couplings

Search Result 39, Processing Time 0.023 seconds

DEVELOPMENT OF A REFINED STRUCTURAL MODEL FOR COMPOSITE BLADES WITH ARBITRARY SECTION SHAPES (임의의 단면 형상을 갖는 복합재료 블레이드의 첨단 구조해석 모델 개발)

  • Jung, Sung-Nam;Inderjit Chopra
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.215-218
    • /
    • 1999
  • A general structural model, which is an extension of the Vlassov theory, is developed for the analysis of composite rotor blades with elastic couplings. A comprehensive analysis applicable to both thick-and thin-walled composite beams, which can have either open- or closed profile is formulated. The theory accounts for the effects of elastic couplings, shell wall thickness, and transverse shear deformations. A semi-complementary energy functional is used to account for the shear stress distribution in the shell wall. The bending and torsion related warpings and the shear correction factors are obtained in closed form as part of the analysis. The resulting first order shear deformation theory describes the beam kinematics in terms of the axial, flap and lag bending, flap and lag shear, torsion and torsion-warping deformations. The theory is validated against experimental results for various cross-section beams with elastic couplings.

  • PDF

Aeroelastic Stability Analysis of Hingeless Rotor Blades with Composite Flexures

  • Kim, Seung-Jo;Kim, Ki-Tae;Jung, Sung-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.512-521
    • /
    • 2002
  • The flap-lag-torsion coupled aeroelastic behavior of a hingeless rotor blade with composite flexures in hovering flight has been investigated by using the finite element method. The quasisteady strip theory with dynamic inflow effects is used to obtain the aerodynamic loads acting on the blade. The governing differential equations of motion undergoing moderately large displacements and rotations are derived using the Hamilton's principle. The flexures used in the present model are composed of two composite plates which are rigidly attached together. The lead-lag flexure is located inboard of the flap flexure. A mixed warping model that combines the St. Versant torsion and the Vlasov torsion is developed to describe the twist behavior of the composite flexure. Numerical simulations are carried out to correlate the present results with experimental test data and also to identify the effects of structural couplings of the composite flexures on the aeroelastic stability of the blade. The prediction results agree well with other experimental data. The effects of elastic couplings such as pitch-flap, pitch-lag, and flap-lag couplings on the stability behavior of the composite blades are also investigated.

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.575-580
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. 1'he hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_{3}$) coupling. It is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b/}$rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.f the blade.

  • PDF

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.734-740
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered In the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton’s principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_3$) coupling. It Is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b}$ /rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.e.

Effects of Composite Couplings on Hub Loads of Hingeless Rotor Blade (무힌지 로터 블레이드의 허브하중에 대한 복합재료 연성거동 연구)

  • Lee, Ju-Young;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.29-36
    • /
    • 2004
  • In this work, the effect of composite couplings on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor blade is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear, torsional warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade response and hub loads are calculated using a finite element formulation in space and time. The aerodynamic forces acting on the blade are calculated by quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap $({\delta}3)$ or $pitch-lag({\alpha}1)$ coupling. It is found that the elastic couplings have a substantial effect on the behavior of $N_b/rev$ hub loads. Nearly 10 to 40% of hub loads is reduced by appropriately tailoring the fiber orientation angles in the laminae of the composite blade.

A Study on the Calculation of Stiffness Properties for Composite Box-Beams with Elastic Couplings (구조연성을 고려한 복합재료 상자형 보의 강성계수 예측에 관한 연구)

  • 정성남;동경민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.147-150
    • /
    • 2001
  • In the present work, a linear static analysis is presented for thin-walled prismatic box-beams made of generally anisotropic materials. A mixed beam theory has been used to model and carry out the analysis. Three different constitutive relations are assessed into the beam formulation. Simple layup cases having symmetric or anti-symmetric configuration have been chosen and tested to clearly show the effects of elastic couplings of the beam. Both 2D and 3D finite element structural analysis using the MSC/NASTRAN has been performed to validate the current analytical results. Results show that appropriate assumptions for the constitutive equations are important and prerequisite for the accurate prediction of beam stiffness constants and also for the beam behavior.

  • PDF

A Simple Beam Model for Thin-Walled Composite Blades with Closed, Two-Cell Sections (폐쇄형 이중세포로 된 박벽 복합재료 블레이드의 단순화 해석 모델)

  • Jung, Sung-Nam;Park, Il-Ju;Lee, Ju-Young;Lee, Jung-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.187-190
    • /
    • 2005
  • A simple beam model based on a mixed method is proposed for the analysis of thin-walled composite blades with a two-cell airfoil section. A semi-complementary energy functional is used to obtain the beam force-displacement relations. The theory accounts for the effects of elastic couplings, shell wall thickness, warping, and warping restraint. All the kinematic relations as well as the cross-section stiffnesses are evaluated in a closed-form through the current beam formulation. The theory has been applied to two-cell composite blades with extension-torsion couplings and fairly good correlation has been observed in comparison with a detailed analysis and other literature.

  • PDF

Finite Element Structural Analysis of Open-Section Composite Beams Considering Transverse Shear (전단변형을 고려한 개방형 단면 복합재료 보의 유한요소 구조해석)

  • 정성남
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.161-164
    • /
    • 2000
  • In this paper, a finite element structural analysis for thin-walled open-section composite beams with elastic couplings has been performed. The analysis includes the effects of transverse shear across beam sections, torsion warping and constrained warping. Reissner's semi-complementary energy functional is used to obtain the beam st illness coefficients The bending and torsion related warpings and the shear correct ion factors are obtained as part of the analysis. The resulting theory describes the beam kinematics in terms of the axial, flap and lag bending, flap and lag shear, torsion and torsion-warping deformations. The static response has been validated against finite element predict ions, closed form solutions, and experimental data for rectangular sol id and I-beams with elastic couplings. The free vibration results are also compared with available literature.

  • PDF

Influence of Couplings on the Buckling Behavior of Composite Laminates with a Delamination (층간분리로 인한 연계강성이 복합재 적층판의 좌굴거동에 미치는 영향)

  • 김효진;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.354-362
    • /
    • 1995
  • The finite element modeling is used to study the buckling and postbuckling behavior of composite laminates with an embedded delamination. Degenerated shell element and rigid beam element are utilized for the finite element modeling. In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piola-Kirchhoff stress tensor and the Green strain tensor is used. The buckling and postbuckling behavior of composite laminates with a delamination are investigated for various delamination sizes, stacking sequences, and boundary conditions. It is shown that the buckling load and postbuckling behavior of composite laminates depend on the buckling model which is determined by the delamination size, stacking sequence and boundary condition. Also, results show that introduction of couplings can reduce greatly the buckling load.

Structural Behavior of Thin-Walled, Pretwisted Composite Beams (초기 비틀림 각을 갖는 박벽 복합재료 보의 정적 거동 해석)

  • Park, Il-Ju;Hong, Dan-Bi;Jung, Sung-Nam
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.15-20
    • /
    • 2007
  • In this work, the structural response of thin-walled, composite beams with built-in twist angles is analyzed using a mixed beam approach. The analytical model includes the effects of elastic couplings, shell wall thickness, and torsion warping. Reissner's semi-complimentary energy functional is used to describe the beam theory and also to deal with the mixed-nature in the beam kinematics. The bending and torsion related warpings introduced by the non-zero pretwist angles are derived in closed-form through the proposed beam formulation. The theory is validated with available literature and detailed finite element analysis results for rectangular solid section beams with elastic couplings. Very good correlation has been obtained for the cases considered.