• Title/Summary/Keyword: Composite Construction Method

Search Result 644, Processing Time 0.028 seconds

Visible Light-Driven $CuInS_2-TiO_2$ Nanotube Composite Photoelectrodes with Heterojunction Structureusing Pulsed-Electrochemical Deposition Process (Pulse 전위를 적용한 전기화학적 증착 공정으로 제조된 가시광 활성 이종접합 $CuInS_2-TiO_2$ Nanotube 화합물 광전극)

  • Yun, Jung-Ho;Amal, Rose;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • Excellent electron transport properties with enhanced light scattering ability for light harvesting have made well-ordered one dimensional $TiO_2$ nanotube(TNT) arrays an alternative candidate over $TiO_2$ nanoparticles in the area of solar energy conversion applications. The principal drawback of TNT arrays being activated only by UV light has been addressed by coupling the TNT with secondary materials which are visible light-triggered. As well as extending the absorption region of sunlight, the introduction of these foreign components is also found to influence the charge separation and electron lifetime of TNT. In this study, a novel method to fabricate the TNT-based composite photoelectrodes employing visible responsive $CuInS_2$ (CIS) nanoparticles is presented. The developed method is a square wave pulse-assisted electrochemical deposition approach to wrap the inner and outer walls of a TNT array with CIS nanoparticles. Instead of coating as a dense compact layer of CIS by a conventional non-pulsed-electrochemical deposition method, the nanoparticles pack relatively loosely to form a rough surface which increases the surface area of the composite and results in a higher degree of light scattering within the tubular channels and hence a greater chance of absorption. The excellence coverage of CIS on the tubular $TiO_2$ allows the construction of an effective heterojunction that exhibits enhanced photoelectrochemical performance.

A Study on the Evaluation of Basic Properties of Composite Emulsion Finishes (복합 에멀젼계 마감재의 기초물성 평가에 관한 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kim, Deuck-Mo;Song, Sung-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • The thin coating material used in the outer insulation finishing method is a finishing material mainly based on acrylic emulsion. In this study, the properties of silane modified acrylic emulsion and silica dispersed acrylic emulsion were evaluated. Experimental results showed that the silane modified acrylic emulsion had no significant effect on improving tensile strength, but was effective in improving the performance of adhesion strength, water absorption coefficient, and hot and cold repeat resistance. Silica-dispersed acrylic emulsions were effective in improving tensile strength, and at 10% substitution rate, they were effective in improving the performance of adhesion strength, water absorption coefficient and hot / cold resistance. Through this, it was judged that a composite emulsion capable of improving the performance of the acrylic emulsion could be prepared.

An Experimental Study on the Mechanical and Fire Resistance Properties of ECC Fire Resistance Panel (ECC내화패널의 역학 및 내화특성에 관한 실험적 연구)

  • Lee, Sang-Soo;Kang, Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • This study was based on an experiment that examines the manufacture and performance of fiber-reinforced cement composite panels. The conclusions were drawn after testing the mechanical properties and durability characteristics of fiber-reinforced mortar, and the mechanical properties and fire resistance of ECC fire resistant column panels. It was found that the fluidity of CEL fiber was lower than that of PVA and NY fiber. The amount of air increased slightly as the combination of fibers caused the number of fine pores to increase. It was found that the mechanical performance and deformability of high strength concrete could be improved through the confinement effect of ECC fire resistant column panels. Through continuous studies on the manufacturing and field construction methods of fire resistant column panels, a new PC method that eliminates weakness in the existing processes may be developed for skyscrapers.

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

3D Shape Reconstruction from 2D Cross-Sections (단면 정보를 이용한 형상의 재구성)

  • Park, H.J.;Kim, K.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.81-93
    • /
    • 1993
  • The three dimensional(3D) shape reconstruction from two dimensional(2D) cross-sections can be completed through three main phases : the input compilation, the triangular grid formation, and the smooth surface construction. In the input compilation phase, the cross-sections are analyzed to exctract the input data required for the shape reconstruction. This data includes the number of polygonized contours per cross-section and the vertices defining each polygonized contour. In the triangular grid formation phase, a triangular grid, leading to a polyhedral approximations, is constructed by extracting all the information concerning contour links between two adjacent cross- sections and then performing the appropriate triangulation procedure for each contour link. In the smooth surface construction phase, a smooth composite surface interpolating all vertices on the triangular grid is constructed. Both the smooth surface and the polyhedral approximation can be used as reconstructed models of the object. This paper proposes a new method for reconstructing the geometric model of a 3D objdect from a sequence of planar contours representing 2D cross-sections of the objdect. The method includes the triangular grid formation algorithms for contour closing, one-to-one branching, and one-to-many braanching, and many-to-many branching. The shape reconstruction method has been implemented on a SUN workstation in C.

  • PDF

Design and Construction Method Considering Turnout for High-speed on The Bridge with Concrete Track (콘크리트궤도에 고속분기기 설치를 고려한 교량설계 및 시공기법)

  • Kim, In-Jae;Oh, Sei-Young;Joo, Hwan-Joong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.71-79
    • /
    • 2008
  • The concrete track is being used at the Phase II of the Kyeongbu High Speed Railway and New Constructed Honam High Speed Railway. When it makes a decision of bridge type, It has to consider about longitudinal forces of Continuous Welded Rail, Displacement at the end of bridges, Up-lift forces for fastener on the track. If it is installed turnout on the bridge, There is likelihood of the deck twist by applying the each difference longitudinal forces at the 4 each rails and the buckling by concentration of rail stress at the turnout. Moreover, If it is installed turnout on the continuous bridge and REJ(Rail Expansion Joint) on the main track or turnout track. It is hard to keep a safety for rail because of coming to twist or folding at the expansion of deck on the turnout track. Therefore when it is a design of bridge with turnout. It need to take bridge type to minimize an additional axial force and a displacement at the turnout. This paper makes a study of the composite steel arch bridge that is able to resolve criteria requirements of safety for track with turnout and suggest a helpful design method for bridge considering track with turnout by being based on design and construction method of Eonyang Bridge at the north part of Ulsan Station in Phase II of the Kyeongbu High Speed Railway.

  • PDF

Inverse analysis of erection process for prismatic tensegrity structures with redundant cables

  • Pei Zhang;Huiting Xiong;Jingjing Yang;Jiayan Liu
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.125-141
    • /
    • 2023
  • Firstly, a new kind of prismatic tensegrity structures with redundant cables is defined, the topology, geometry and forming conditions of which are introduced further. The development of its mechanical properties including self-stress states and structural stiffness with the increment of the twist angle is also investigated carefully. Combined with the topology of this kind of structures, a reasonable erection scheme is proposed, in which some temporary lifting points need to be set and two groups of vertical cables are tensioned in batches. Then, a simplified dynamic relaxation method is employed to track the erection process inversely, which aims to predict each intermediate equilibrium state during the construction, and give the key structural parameters that can effectively guide the construction. The removal of the active cables, the relaxation or tension of the passive cables are simulated by controlling their axial stiffness, so that the structural composition as well as the serial numbers of the elements always keep invariant regardless of the withdrawal of the slack cables. The whole analysis process is clear in concept, simple to implement and easy to popularize. Finally, several examples are given to verify the practicability and effectiveness of the proposed method further.

Three-Dimensional Vibration Analysis of Rectangular Laminated Composite Plates with Combination of Clamped and Free Boundary Conditions (고정과 자유경계조건의 조합을 고려한 직사각형 복합적층판의 3차원 진동해석)

  • Kim, Joo woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.161-171
    • /
    • 2006
  • paper presents the results of a three-dimensional study of the natural vibration of laminated composite rectangular plates with various combinations of clamped and free boundaries. The Ritz method was used to obtain the stationary values of the associated Lagrangian, with displacements approximated using mathematicaly complete, characteristic orthogonal polynomials. The correctness of the three-dimensional model was established through a convergence study of the non-dimensional frequencies, followed by a comparison of the analytical findings in the existing literature. The wide scope of additional three-dimensional frequency results explains the influence of a number of geometrical and material parameters for angle-ply and cross-ply laminated plates, namely aspect ratio (${\mathcal{a/b}}$), thickness ratio (${\mathcal{a/h}}$), orthotropy of material, number of plies (${\mathcal{N}}$), fiber orientation angle (${\theta}$), and stacking sequence.

A Study on Improving the Non-Combustible Properties of High-Density Fiber Cement Composites (고밀도 섬유 시멘트 복합체 불연특성 개선에 관한 연구)

  • Song, Tae-Hyeob;Jang, Kyong-Pil
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.521-528
    • /
    • 2021
  • The high-density fiber composite manufacturing method by the extrusion molding method has the characteristic that continuous production is possible, and the product is molded through a mold forming a specific cross-section. OPC is used as a defect material, an appropriate amount of SiO2 is supplied for CaO reaction activity, and high density and high strength are expressed through steam and autoclave curing. However, due to the use of organic reinforcing fibers, the flame duration exceeds the regulations during the non-combustible performance test, making it difficult to secure performance. In this study, the product was produced by mixing alkali-resistant organic fiber and fly ash having voids as a binder by replacing the existing polypropylene fiber. appeared to be possible.

The Evaluation of Axial Stress in Continuous Welded Rails via Three-Dimensional Bridge-Track Interaction

  • Manovachirasan, Anaphat;Suthasupradit, Songsak;Choi, Jun-Hyeok;Kim, Bum-Joon;Kim, Ki-Du
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1617-1630
    • /
    • 2018
  • The crucial differences between conventional rail with split-type connectors and continuous welded rails are axial stress in the longitudinal direction and stability, as well as other issues generated under the influence of loading effects. Longitudinal stresses generated in continuously welded rails on railway bridges are strongly influenced by the nonlinear behavior of the supporting system comprising sleepers and ballasts. Thus, the track structure interaction cannot be neglected. The rail-support system mentioned above has properties of non-uniform material distribution and uncertainty of construction quality. The linear elastic hypothesis therefore cannot correctly evaluate the stress distribution within the rails. The aim of this study is to apply the nonlinear finite element method using the nonlinear coupling interface between the track and structural model and to illustrate the welded rail behavior under the loading effect and uncertain factors of the ballast. Numerical results of nonlinear finite analysis with a three-dimensional solid and frame element model are presented for a typical track-bridge system. A composite plate girder, modeled by solid and shell elements, is also analyzed to consider the behavior of the welded rail. The analysis result showed buckling under the independent calculations of load cases, including 'temperature change', 'bending of the supporting structure', and 'braking' of the railway vehicle. A parametric study of the load combination method and the loading sequence is also included in this analysis.