• Title/Summary/Keyword: Composite Construction Method

Search Result 644, Processing Time 0.024 seconds

Cost Analysis of Composite Method Using Hollow-PC Column (중공 PC기둥을 적용한 복합공법의 공사비 분석)

  • Park, Byeong-Hun;Kim, Jae-Yeob
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.71-72
    • /
    • 2016
  • Most of studies on PC method aim at the structural analysis and development of PC members, and studies on the construction management aspect are insufficient. Therefore, this study tries to investigate 'hallow PC column composite method(HPC composite method)' from the viewpoint of construction management and analyze the construction cost of the composite method. On the assumption that each comparative method was applied to the zone, the difference in construction cost between the two methods was analyzed. As a result, HPC composite method increased the initial investment cost because of its factor technology, but reduced transport cost, lifting cost, and installation cost through lightweight columns. This study analyzed only the difference in construction cost of HPC composite method so that it has the limitation in evaluating its economy. Therefore, to evaluate the economy of HPC composite method, it is considered to research more the construction cost of HPC composite method.

  • PDF

Assessment of lightweight recycled crumb rubber-cement composite produced by preplaced method

  • Shah, Syed Nasir;Mo, Kim Hung;Yap, Soon Poh;Putra, Azma;Othman, Muhammad Nur
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.409-417
    • /
    • 2021
  • The incorporation of non-biodegradable tyre waste in cement-based material has gained more interest towards sustainable construction these days. Crumb rubber (CR) from waste tyre is an alternative for sand replacement in low strength applications. Many researchers have studied CR cement-based materials produced by normal mixing (NM) method and reported a significant decrease in compressive strength due to CR. To compensate this strength loss, this research aims to study the innovative incorporation of CR in cement composite via the preplaced mixing (PM) method. In this investigation, cement composite was produced with NM and PM methods by replacing sand with 0%, 50%, and 100% CR by volume. The test results showed no significant difference in terms of densities of cement composite prepared with both mixing methods. However, cement composite prepared with PM method had lower strength reduction (about 10%) and lowered drying shrinkage (about 20%). In addition, the sound absorption coefficient and noise reduction coefficient of CR cement composite prepared by PM method were in similar range as those prepared with NM method. Overall, the results demonstrate that the PM method is promising, and the maximum replacement level of 50% is recommended for CR in the cement composite.

Simulating the construction process of steel-concrete composite bridges

  • Wu, Jie;Frangopol, Dan M.;Soliman, Mohamed
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1239-1258
    • /
    • 2015
  • This paper presents a master-slave constraint method, which may substitute the conventional transformed-section method, to account for the changes in cross-sectional properties of composite members during construction and to investigate the time-dependent performance of steel-concrete composite bridges. The time-dependent effects caused by creep and shrinkage of concrete are considered by combining the age-adjusted effective modulus method and finite element analysis. An efficient computational tool which runs in AutoCAD environment is developed to simulate the construction process of steel-concrete composite bridges. The major highlight of the developed tool consists in a very convenient and user-friendly interface integrated in AutoCAD environment. The accuracy of the proposed method is verified by comparing its results with those provided by using the transformed-section method. Furthermore, the computational efficiency of the developed tool is demonstrated by applying it to a steel-concrete composite bridge.

Study on Applicability of NATM Composite Lining Method (NATM Composite 라이닝 공법의 적용성 연구)

  • Ma, Sang-Joon;Kang, Eun-Gu;Kim, Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.69-84
    • /
    • 2011
  • This paper presents the applicability of NATM Composite Lining method in domestic tunnel construction sites. Firstly, in order to produce high quality PC Panel, optimal steam curing condition is reviewed. And in preparation for fire inside the tunnel, the fire-resistance test of PC Panel is carried out. The constructability of NATM Composite Lining method and the drainage ability of light-weight foamed mortar is also evaluated through field construction test. And PC Panel combination program is developed to calculate the quantity of PC Panel efficiently. Besides, economic evaluation for NATM Composite Lining method is conducted. From this research, it is clearly found that NATM Composite Lining method is applicable to domestic tunnel construction site.

A Study on the Economical Analysis of the Composite Precast Concrete Method (프리캐스트 콘크리트 복합화공법의 경제성 분석에 관한 연구)

  • Yoo, Dae-Ho;Lee, Han-Bok;Ahn, Jae-Cheol;Kang, Byeung-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.113-118
    • /
    • 2007
  • In this study, we select a site adopting real composite precast concrete method. Estimating real construction cost and imaginary cost appling reinforced concrete method in the site, we compare the costs. Through using high intensity concrete and prestressed concrete, amount of concrete is reduced more than 50% but there isn't big gap in material cost. In the main construction cost of composite precast concrete method, the material cost with production cost and transportation cost are in that, joints and topping concrete are account for 90%. But in case of reinforced concrete, labor cost spent at concrete steel bar and form is account for 30%. In the cost of attached, compared with composite precast concrete method, the reinforced concrete method taken in big portion by temporary work and scaffolding is twice as much as composite precast concrete method in construction cost. Therefore, economic efficiency is excellent reducing 11% total cost of composite precast concrete method from the reinforced concrete method.

  • PDF

Development of Selection Criteria for Composite Method Using Half-PC Slab (하프슬래브를 이용한 PC 복합공법의 선정기준 개발)

  • Park, Byeong-Hun;Kim, Jae-Yeob
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.103-104
    • /
    • 2016
  • Most of studies on PC method aim at the structural analysis and development of PC members, and studies on the construction management aspect are insufficient. This study is a basic research in the construction management aspect regarding 'composite method using hollow-PC column' (HPC method), and is intended to develop assessment standards for the benefit·cost analysis of HPC method. Assessment standards for the benefit·cost analysis were composed of main-factors and sub-factors through interview with 4 experts. It was possible to classify main-factors into 4 major categories, i.e,. structural performance, construction performance, construction duration and construction cost. Sub-factors were composed of factors which were of high importance in assessing the two methods. And factors judged to be repeated or of little importance were excluded.

  • PDF

Application of Composites to Construction Industry and Development of Concrete Filled Composite Compression Member (복합소재의 건설분야 응용현황과 콘크리트 합성압축부재의 개발)

  • 이성우;박신전
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.183-188
    • /
    • 1999
  • Due to many advantages of advanced composite materials, research on the application of composites to the construction industry is initiated. In this paper, fabrication methods efficient for infrastructures and application examples of each method are discussed. It also presents the structural characteristics of concrete filled glass fiber reinforced composite tubular member. Experimental results shows that strength and ductility of composite compression member is considerably increased due to concrete confinement action of composite surface.

  • PDF

Experimental studies of circular composite bridge piers for seismic loading

  • Chen, Sheng-Jin;Yang, Kuo-Chen;Lin, K.M.;Wang, C.C.
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.261-273
    • /
    • 2012
  • This study proposes and examines a circular composite bridge pier for seismic resistance. The axial and flexural strengths of the proposed bridge pier are provided by the longitudinal reinforcing bars and the concrete, while the transverse reinforcements used in the conventional reinforced concrete pier are replaced by the steel tube. The shear strength of this composite pier relies on the steel tube and the concrete. This system is similar to the steel jacketing method which strengthens the existing reinforced concrete bridge piers. However, no transverse shear reinforcing bar is used in the proposed composite bridge pier. A series of experimental studies is conducted to investigate the seismic resistant characteristics of the proposed circular composite pier. The effects of the longitudinal reinforcing bars, the shear span-to-diameter ratio, and the thickness of the steel tube on the performance of strength, ductility, and energy dissipation of the proposed pier are discussed. The experimental results show that the strength of the proposed circular composite bridge pier can be predicted accurately by the similar method used in the reinforced concrete piers with minor modification. From these experimental studies, it is found that the proposed circular composite bridge pier not only simplifies the construction work greatly but also provides excellent ductility and energy dissipation capacity under seismic lateral force.

Temporary Stresses by Applying Construction Methods for Continuous Steel-Concrete Double Composite Box Girder Bridges (이중합성 연속 박스거더교에 대한 가설공법별 발생 단면력 검토)

  • Choi, Hang Yong;Suh, Suk Koo;Oh, Myung Seok;Oh, Sae Hwan;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.681-693
    • /
    • 2007
  • Construction techniques for continuous steel bridges were applied to steel-concrete double composite box girder bridges. Concrete depth and length at the bottom of the steel box in the negative moment region were determined by plastic moment region and negative moment region of the double composite section, respectively. Construction methods, such as crane lifting method, free cantilever method, and incremental launching method were used for the analysis of the construction stage. Two cases of the construction phase were considered and analyzed for the stress resultant of double composite girders. The behavior of the nose-deck elastic system was examined by three-dimensionless parameters, such as the nose length, the unit weight of the launching nose, and the flexural stiffness of the nose. The adoption of the launching nose has become an effective solution in the incremental launching of steel-concrete double composite box girder bridges.

Construction sequence modelling of continuous steel-concrete composite bridge decks

  • Dezi, Luigino;Gara, Fabrizio;Leoni, Graziano
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.123-138
    • /
    • 2006
  • This paper proposes a model for the analysis of the construction sequences of steel-concrete composite decks in which the slab is cast-in-situ for segments. The model accounts for early age shrinkage, such as thermal and endogenous shrinkage, drying shrinkage, tensile creep effects and the complex sequences of loading due to pouring of the different slab segments. The evolution of the structure is caught by suitably defining the constitutive relationships of the concrete and the steel reinforcements. The numerical solution is obtained by means of a step-by-step procedure and the finite element method. The proposed model is then applied to a composite deck in order to show its potential.