• Title/Summary/Keyword: Component-based System

Search Result 2,676, Processing Time 0.029 seconds

Analysis of Salmonella Contaminated Beef Odor Using an Electronic Nose

  • Kim, Gi-Young;Lee, Kang-Jin;Son, Jae-Yong;Kim, Hak-Jin
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.185-189
    • /
    • 2010
  • An electronic nose was used to identify Salmonella contamination on beef based on odors. To detect pathogen contamination of beef, $100{\mu}L$ of $10^5CFU/g$ Salmonella Enteritidis or Salmonella Typhimurium cell suspensions were spiked onto 5 g beef sirloin samples in individual vials. Odor changes over time were then measured and analyzed using an electronic nose system to identify pathogen contamination. In principle, the electronic nose system based on a surface acoustic wave (SAW) detector produced different frequency responses depending on the time and amount of each chemical. Multivariate analysis of the odor data was conducted to detect Salmonella contamination of beef. Salmonella odors were successfully distinguished from uncontaminated beef odors by principal component analysis (PCA). The PCA results showed that Salmonella contamination of beef could be detected after 4 h of incubation. The numbers of cells enumerated by standard plate count after 4 h of inoculation were $2{\times}10^6CFU/g$ for both Salmonella Enteritidis and Salmonella Typhimurium.

Service Management System Framework for Web-based Remote Education (웹 기반 원격교육을 위한 서비스관리시스템 프레임워크)

  • 배제민
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.7
    • /
    • pp.933-944
    • /
    • 2001
  • In the process of software development, object-oriented framework enables directly improving the productivity of the developer through the reuse of code, analysis and design informations. object-oriented framework is a set of usable and expandable classes and their connectivity. It is a meta solution that contains the code to be reused in the framework and the expert design results on a specific area. This paper constructs the framework that extracts the common services of BBS, chatting, white board and ftp applications for internet-based remote education system. These services can be mostly reused within heterogeneous applications in the form of component.

  • PDF

Voltage Balance Control of Cascaded H-Bridge Rectifier-Based Solid-State Transformer with Vector Refactoring Technology in αβ Frame

  • Wong, Hui;Huang, Wendong;Yin, Li
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.487-496
    • /
    • 2019
  • For a solid-state transformer (SST), some factors, such as signal delay, switching loss and differences in the system parameters, lead to unbalanced DC-link voltages among the cascaded H-bridges (CHB). With a control method implemented in the ${\alpha}{\beta}$ frame, the DC-link voltages are balanced, and the reactive power is equally distributed among all of the H-bridges. Based on the ${\alpha}{\beta}$ frame control, the system can achieve independent active current and reactive current control. In addition, the control method of the high-voltage stage is easy to implement without decoupling or a phase-locked loop. Furthermore, the method can eliminate additional current delays during transients and get the dynamic response rapidly without an imaginary current component. In order to carry out the controller design, the vector refactoring relations that are used to balance DC-link voltages are derived. Different strategies are discussed and simulated under the unbalanced load condition. Finally, a three-cell CHB rectifier is constructed to conduct further research, and the steady and transient experimental results verify the effectiveness and correctness of the proposed method.

Seismic fragility analysis of sliding artifacts in nonlinear artifact-showcase-museum systems

  • Liu, Pei;Li, Zhi-Hao;Yang, Wei-Guo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.333-350
    • /
    • 2021
  • Motivated by the demand of seismic protection of museum collections and development of performance-based seismic design guidelines, this paper investigates the seismic fragility of sliding artifacts based on incremental dynamic analysis and three-dimensional finite element model of the artifact-showcase-museum system considering nonlinear behavior of the structure and contact interfaces. Different intensity measures (IMs) for seismic fragility assessment of sliding artifacts are compared. The fragility curves of the sliding artifacts in both freestanding and restrained showcases placed on different floors of a four-story reinforced concrete frame structure are developed. The seismic sliding fragility of the artifacts within a real-world museum subjected to bi-directional horizontal ground motions is also assessed using the proposed IM and engineering demand parameter. Results show that the peak floor acceleration including only values initiating sliding is an efficient IM. Moreover, the sliding fragility estimate for the artifact in the restrained showcase increases as the floor level goes higher, while it may not be true in the freestanding showcase. Furthermore, the artifact is more prone to sliding failure in the restrained showcase than the freestanding showcase. In addition, the artifact has slightly worse sliding performance subjected to bi-directional motions than major-component motions.

A Study on the Performance Analysis of RSC (Roll Stability Control) for Driving Stability of Vehicles (차량 롤 주행안정성 향상을 위한 RSC (Roll Stability Control) 성능 해석에 관한 연구)

  • Kwon, Seong-Jin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.257-263
    • /
    • 2022
  • Active stabilizers use signals such as steering angle, yaw rate, and lateral acceleration to vary the roll stiffness of the front and rear suspension depending on the vehicle's driving conditions, and are attracting attention as RSC (Roll Stability Control) system that suppresses roll when turning and improves ride comfort when going straight. Various studies have been conducted in relation to active stabilizer bars and RSC systems. However, accurate modeling of passive stabilizer model and active stabilizer model and vehicle dynamics analysis result verification are insufficient, and performance result analysis related to vehicle roll angle estimation and electric motor control is insufficient. Therefore, in this study, an accurate vehicle dynamics model was constructed by measuring the passive/active stabilizer bar model and component parameters. Based on this, the analysis result with high reliability was derived by comparing the roll angle estimation algorithm based on the lateral acceleration and suspension of the vehicle with the actual vehicle driving test result. In addition, it was intended to accurately analyze the motor torque characteristics and roll reduction effects of the electric motor-driven RSC system.

Predicting the lateral displacement of tall buildings using an LSTM-based deep learning approach

  • Bubryur Kim;K.R. Sri Preethaa;Zengshun Chen;Yuvaraj Natarajan;Gitanjali Wadhwa;Hong Min Lee
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.379-392
    • /
    • 2023
  • Structural health monitoring is used to ensure the well-being of civil structures by detecting damage and estimating deterioration. Wind flow applies external loads to high-rise buildings, with the horizontal force component of the wind causing structural displacements in high-rise buildings. This study proposes a deep learning-based predictive model for measuring lateral displacement response in high-rise buildings. The proposed long short-term memory model functions as a sequence generator to generate displacements on building floors depending on the displacement statistics collected on the top floor. The model was trained with wind-induced displacement data for the top floor of a high-rise building as input. The outcomes demonstrate that the model can forecast wind-induced displacement on the remaining floors of a building. Further, displacement was predicted for each floor of the high-rise buildings at wind flow angles of 0° and 45°. The proposed model accurately predicted a high-rise building model's story drift and lateral displacement. The outcomes of this proposed work are anticipated to serve as a guide for assessing the overall lateral displacement of high-rise buildings.

Mega Irises: Per-Pixel Projection Illumination Compensation for the moving participant in projector-based visual system (Mega Irises: 프로젝터 기반의 영상 시스템상에서 이동하는 체험자를 위한 화소 단위의 스크린 투사 밝기 보정)

  • Jin, Jong-Wook;Wohn, Kwang-Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.4
    • /
    • pp.31-40
    • /
    • 2011
  • Projector-based visual systems are widely used for VR and experience display applications. But the illumination irregularity on the screen surface due to the screen material and its light reflection properties sometimes deteriorates the user experience. This phenomenon is particularly troublesome when the participants of the head tracking VR system such as CAVE or the motion generation experience system continually move around the system. One of reason to illumination irregularity is projector-screen specular reflection component to participant's eye's position and it's analysis needs high computation complexity. Similar to calculate specular lighting term using GPU's programmable shader, Our research adjusts every pixel's brightness in runtime with given 3D screen space model to reduce illumination irregularity. For doing that, Angle-based brightness compensate function are considered for specific screen installation and modified it for GPU-friendly compute and access. Two aspects are implemented, One is function access transformation from angular form to product and the other is piecewise linear interpolate approximation.

Development of Intrusion Detection System for GOOSE Protocol Based on the Snort (GOOSE 프로토콜 환경에서 Snort 기반의 침입 탐지 시스템 개발)

  • Kim, Hyeong-Dong;Kim, Ki-Hyun;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1181-1190
    • /
    • 2013
  • The GOOSE(Generic Object Oriented Substation Event) is used as a network protocol to communicate between IEDs(Intelligent Electronic Devices) in international standard IEC 61850 of substation automation system. Nevertheless, the GOOSE protocol is facing many similar threats used in TCP/IP protocol due to ethernet-based operation. In this paper, we develop a IDS(Intrusion Detection System) for secure GOOSE Protocol using open software-based IDS Snort. In this IDS, two security functions for keyword search and DoS attack detection are implemented through improvement of decoding and preprocessing component modules. And we also implement the GOOSE IDS and verify its accuracy using GOOSE packet generation and communication experiment.

Implementation of IEEE 1451 based ZigBee Smart Sensor System for Active Telemetries (능동형 텔레매트릭스를 위한 IEEE 1451 기반 ZigBee 스마트 센서 시스템의 구현)

  • Lee, Suk;Song, Young-Hun;Park, Jee-Hun;Kim, Man-Ho;Lee, Kyung-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.176-184
    • /
    • 2011
  • As modern megalopolises become more complex and huge, convenience and safety of citizens are main components for a welfare state. In order to make safe society, telemetrics technology, which remotely measures the information of target system using electronic devices, is an essential component. In general, telemetrics technology consists of USN (ubiquitous sensor network) based on a wireless network, smart sensor, and SoC (system on chip). In the smart sensor technology, the following two problems should be overcome. Firstly, because it is very difficult for transducer manufacturers to develop smart sensors that support all the existing network protocols, the smart sensor must be independent of the type of networking protocols. Secondly, smart sensors should be modular so that a faulty sensor element can be replaced without replacing healthy communication element. To solve these problems, this paper investigates the feasibility of an IEEE 1451 based ZigBee smart sensor system. More specifically, a smart sensor for large network coverage has been developed using ZigBee for active telemetrics.

Field Application of a Cable NDT System for Cable-Stayed Bridge Using MFL Sensors Integrated Climbing Robot (누설자속센서를 탑재시킨 이동로봇을 이용한 사장교 케이블 비파괴검사 시스템의 현장 적용)

  • Kim, Ju-Won;Choi, Jun-Sung;Lee, Eun-Chan;Park, Seung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.60-67
    • /
    • 2014
  • In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.