• Title/Summary/Keyword: Component-based System

Search Result 2,676, Processing Time 0.037 seconds

Behavior and Reduction of Spring-back in a Thin Cold-Forged Product (두께가 얇은 냉간단조품의 스프링백 거동 및 저감설계)

  • Kim, D.W.;Shin, Y.C.;Choi, H.J.;Yoon, D.J.;Lee, G.A.;Kim, Y.G.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.397-402
    • /
    • 2012
  • The flange hub is a main component in an automotive steering system. In general, the flange hub are fabricated by mechanical machining, which is a process where material waste is inevitable. It is well-known that a net-shape cold forging cannot only reduce material waste but can also improve the mechanical strength of the final product. Thus, a forging process design was conducted for production of a flange hub. Significant spring-back occurs around the flange due to its small thickness in conjunction with the residual stresses after forging. In order to achieve the required dimensional accuracy, a process design with appropriate spring-back control is needed. In this study, a modification of the forging die was designed based on FE analysis with the purpose of spring-back compensation. Four kinds of different die designs were evaluated and the optimum design has two times less spring-back than the initial design. The compensation angle of the optimum design is 0.5 degrees. The results have been experimentally confirmed by cold forging of a flange hub and comparing the amount of spring-back between the actual component and the FE analysis.

Face Detection Using Support Vector Domain Description in Color Images (컬러 영상에서 Support Vector Domain Description을 이용한 얼굴 검출)

  • Seo Jin;Ko Hanseok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • In this paper, we present a face detection system using the Support Vector Domain Description (SVDD) in color images. Conventional face detection algorithms require a training procedure using both face and non-face images. In SVDD however we employ only face images for training. We can detect faces in color images from the radius and center pairs of SVDD. We also use Entropic Threshold for extracting the facial feature and sliding window for improved performance while saving processing time. The experimental results indicate the effectiveness and efficiency of the proposed algorithm compared to conventional PCA (Principal Component Analysis)-based methods.

Improvement of Durability and Reliability by Developing a Bi-axial Test Process of Road Wheel (차량 로드 휠의 복합축 평가 프로세스 구축을 통한 내구신뢰성 강건화 및 주행안정성 향상)

  • Chung, Soo Sik;Yoo, Yoen Sang;Kim, Dae Sung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • The steel road wheel on ventilation holes was cracked in the vehicle durability test. But the component durability test by uni-axial, CFT(Cornering Fatigue Test) and RFT(Radial Fatigue Test) had been satisfied. That is, the uni-axial component test could not forecast the crack of vehicle. Therefore this study developed the bi-axial test mode to reflect a vehicle condition(to reflect both vertical and lateral force simultaneously) based on real load data which was measured in Europe and China and developed CAE simulation too. It reproduced the cracks same as vehicle's and verified by bi-axial test machine in the LBF(Fraunhofer Institute for Structural Durability and System Reliability) durability research center in Germany. Finally this the durability CAE simulation by using HMC(Hyundai Motor Company)'s the bi-axial test mode predicts feasibly the steel wheel's durability performance before vehicle durability test.

Testing of Advanced Relaying and Design of Prototype IED for Power Transformer Protection (전력용 변압기 보호용 시제품 IED 설계와 개선된 기법의 시험)

  • Park, Chul-Won;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.6-12
    • /
    • 2006
  • A popular method used by primary protection for power transformer is current ratio differential relaying (RDR) with 2nd harmonic restraints. In modern power transformer due to the use of low-loss amorphous material, the 2nd harmonic component during inrush is significantly reduced. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the 2nd harmonic component during internal fault. Thus the conventional method may not operate properly. This paper proposes an advanced relaying algorithm and the prototype IED hardware design and it's real-time experimental results. To evaluate performance of the proposed algorithm, the study is well constructed power system model including power transformer utilizing the EMTP software and the testing is made through simulation of various cases. The proposed relaying that is well constructed using DSP chip and microprocessor etc. has been developed and the prototype IED has been verified through on-line testing. The results show that an advanced relaying based prototype IED never mis-operated and correctly identified all the faults and that inrushes that are applied.

Unsupervised Real-time Obstacle Avoidance Technique based on a Hybrid Fuzzy Method for AUVs

  • Anwary, Arif Reza;Lee, Young-Il;Jung, Hee;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.82-86
    • /
    • 2008
  • The article presents ARTMAP and Fuzzy BK-Product approach underwater obstacle avoidance for the Autonomous underwater Vehicles (AUV). The AUV moves an unstructured area of underwater and could be met with obstacles in its way. The AUVs are equipped with complex sensorial systems like camera, aquatic sonar system, and transducers. A Neural integrated Fuzzy BK-Product controller, which integrates Fuzzy logic representation of the human thinking procedure with the learning capabilities of neural-networks (ARTMAP), is developed for obstacle avoidance in the case of unstructured areas. In this paper, ARTMAP-Fuzzy BK-Product controller architecture comprises of two distinct elements, are 1) Fuzzy Logic Membership Function and 2) Feed-Forward ART component. Feed-Forward ART component is used to understanding the unstructured underwater environment and Fuzzy BK-Product interpolates the Fuzzy rule set and after the defuzzyfication, the output is used to take the decision for safety direction to go for avoiding the obstacle collision with the AUV. An on-line reinforcement learning method is introduced which adapts the performance of the fuzzy units continuously to any changes in the environment and make decision for the optimal path from source to destination.

Characteristic Classification of Aroma Oil with Gas Sensors Array and Pattern Recognition (가스센서 어레이와 패턴인식을 활용한 아로마 오일의 특성 분류)

  • Choi, Il-Hwan;Hong, Sung-Joo;Kim, Sun-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.118-125
    • /
    • 2018
  • An evaluation system for an electronic-nose concept using three types of metal oxide gas sensors that react similarly to the human olfactory cells was constructed for the quantitative and qualitative evaluation of aroma fragrances. Four types of aroma fragrances (lavender, orange, jasmine, and Roman chamomile), which are commonly used in aromatherapy, were evaluated. All the gas sensors reacted remarkably to the aroma fragrances and the good correlation of r=0.58-0.88 with the aromatic odor intensities by olfaction was confirmed. From the results of the analysis of an electronic-nose concept for classifying the characteristics of aroma oil fragrances, aroma oils could be classified using the fragrance characteristics and oil extraction methods with the cumulative variability contribution rate of 95.65% (F1: 69.65%, F2: 26.03%) by principal component analysis. In the pattern recognition based on the artificial neural network, the four aroma fragrances were 100% recognized through the training data of 56 cases (70%) out of 80 cases, and the pattern recognition rate was 57.1%-71.4% through the validation and testing data of 24 cases (30%). The pattern recognition success rate through all confusion matrices was 82.1%, indicating that the classification of aroma oil fragrances using the three types of gas sensors was successful.

Appearance-based Object Recognition Using Higher Order Local Auto Correlation Feature Information (고차 국소 자동 상관 특징 정보를 이용한 외관 기반 객체 인식)

  • Kang, Myung-A
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1439-1446
    • /
    • 2011
  • This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the higher correlation feature information and Principle Component Analysis. Since the suggested method doesn't require a lot of computation than the method using existing geometric information or stereo image, the fact that it is very suitable for building the real-time system has been proved through the experiment. In addition, since the existing point to point method which is a simple distance calculation has many errors, in this paper to improve recognition rate the recognition error could be reduced by using several successive input images as a unit of recognition with K-Nearest Neighbor which is the improved Class to Class method.

A Study on the Functional Importance Determination Methodology for Components in Nuclear Power Plants (원전 기기의 기능적중요도결정 방법론에 대한 연구)

  • Song, Tae-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • In around 2000, the U.S. NPPs have developed the various advanced engineering processes based on the INPO AP-913(Equipment Reliability Process Description) and showed the high performance in availability. With these benchmarking cases, the Korean NPPs have introduced the advanced engineering technology since 2005. The first step of the advanced engineering is to analyze and determine component importance for all components of a plant. This process is called Functional Importance Determination(FID). These results are basically utilized to determine the priority with limited resources in various areas. However, because the consistency of FID results is insufficient despite applying the same criteria in the existing operating NPPs, the degree of application is low. Therefore, this paper presents the improved methodology for FID interfacing system functions of Maintenance Rule Program and results of Single Point Vulnerability(SPV). This improved methodology is expected to contribute to enhance the reliability of FID data.

Systems Engineering approach to Reliability Centered Maintenance of Containment Spray Pump (시스템즈 엔지니어링 기법을 이용한 격납용기 살수펌프의 신뢰기반 정비기법 도입 연구)

  • Ohaga, Eric Owino;Lee, Yong-Kwan;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.65-84
    • /
    • 2013
  • This paper introduces a systems engineering approach to reliability centered maintenance to address some of the weaknesses. Reliability centered maintenance is a systematic, disciplined process that produces an efficient equipment management strategy to reduce the probability of failure [1]. The study identifies the need for RCM, requirements analysis, design for RCM implementation. Value modeling is used to evaluate the value measures of RCM. The system boundary for the study has been selected as containment spray pump and its motor drive. Failure Mode and Criticality Effects analysis is applied to evaluate the failure modes while the logic tree diagram used to determine the optimum maintenance strategy. It is concluded that condition based maintenance tasks should be enhanced to reduce component degradation and thus improve reliability and availability of the component. It is recommended to apply time directed tasks to age related failures and failure finding tasks to hidden failures.

Android Intent Based Component Interaction Diagram Generation and Test Scenarios Design Techniques (안드로이드 인텐트 기반 컴포넌트 상호작용 다이어그램 생성 및 테스트 시나리오 설계기법)

  • Baek, Tae-San;Lee, Woo Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.4
    • /
    • pp.165-170
    • /
    • 2016
  • Using the intent of the Android application, an application can execute other application's components. However, if interaction between these components are not processed normally, such problems as incorrect component execution and unhandled system broadcast may be occurred. In this paper, to generate test scenarios for inter application interaction, a testing approach is proposed using a merged intent list and a single merged diagram. The proposed method can effectively be carried out to check the abnormal interaction among the applications which was not considered in existing testing approaches.