• Title/Summary/Keyword: Component wave

Search Result 518, Processing Time 0.025 seconds

Experimental Studies on Ultrasonic Guided Waves for the On-Line Inspection of Structural Integrity of Nuclear Power Plants (원전 기기 건전성의 온라인 검사를 위한 유도 초음파의 실험적 연구)

  • Eom, Heung-Seop;Kim, Jae-Hee;Song, Sung-Jin;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.331-340
    • /
    • 2004
  • Deployment of an advanced on-line monitoring of the component integrity offers a prospect of improved performance, enhanced safety, and reduced overall cost for nuclear power plants. Ultrasonic guided waves have been known as one of the promising techniques that could be utilized for on-line monitoring. The present work is aimed at developing a new method for on-line monitoring of the pipes during the operation period of nuclear power plants. For this purpose, the steam generator (S/G) tube was selected as an object of tile experiment. Dispersion corves and the incident angles corresponding to the specific modes were calculated for the S/G tube. The modes of guided waves were identified by the time-frequency diagrams obtained by the short time Fourier transform. It was experimentally confirmed that there was no mode conversion when the ultrasonic guided waves passed over the curved region of the S/G tube. An optimum mode of guided wave for the S/G tube was suggested and verified by the experiment.

A Design of Mooring Line for the Buoy-Enabled Underwater Surveillance System (부이형 수중감시 시스템에서 계류라인의 구조 설계)

  • Byun, Yang-Hun;Choi, Bum-Kyu;Oh, Tae-Won
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.41-47
    • /
    • 2018
  • The buoy-enabled underwater surveillance system is a device that is installed in a particular sea area and operated for a certain period of tine and moved to another sea area after recovery. In this paper, a mooring method which is applied for a buoy-enabled underwater surveillance system was selected to maintain installation and enure stable operation. Also, the structure of the mooring line was designed. Two-point mooring method was selected considering interference with the communication cable of array-assembly. The composite structure of buoy chain, nylon rope, and anchor chain is designed as the basic component of mooring line. For the verification of design, a numerical simulation and wave tank experiment were performed. Their results were confirmed similarity in test condition. Finally, the mooring lines were designed for the environment of the sea trial location. The mooring line produced by the final design confirmed the stability above the significant wave height considered in the design on the sea trial.

Analysis of Ground Vibration Characteristics by Test Blasting in Southern Region of Jeju (제주 남부지역의 시험발파에 의한 지반진동 특성 분석)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.419-429
    • /
    • 2019
  • The characteristics of ground vibration have been analyzed by test blasting in southern region of Jeju (layered ground consisting of basalt and clinker). By grasping the principal component of ground vibration and depriving the prediction equations of ground vibration, the propagation characteristics of ground vibration have been compared to the domestic design guidelines. Ground vibration in layered ground has a small amplitude at a short distance. However, it has been confirmed that the vibration energy is transmitted further by virtue of the low attenuation of the ground vibration as it goes to a longer distance. Moreover, the frequency has been confirmed to be low frequency band. The outcome has been defined that it resulted because the clinker layer with a large pore transforms the blasting energy seismic wave with high frequency into a low frequency wave having a long waveform period. In addition, the limits of design guidelines were identified by comparing the ground vibration of Jeju and other bedrock areas. Thus, the necessity of the development of the prediction equations of ground vibration utilized in design that reflect the characteristics of the area has been suggested.

The associations between marital satisfaction and life satisfaction among retirees in later life: a longitudinal comparison (은퇴 노인의 부부관계 만족도와 삶 만족도의 관계에 대한 종단적 비교)

  • Choi, Bomi;Jun, Hey Jung;Joo, Susanna
    • Journal of Family Relations
    • /
    • v.21 no.2
    • /
    • pp.77-96
    • /
    • 2016
  • Objectives: The aims of this study are to examine the associations between marital satisfaction and life satisfaction among Korean retirees in later life and to test whether the degrees of associations increased over time. Method: Nationally representative Korean Longitudinal Study of Ageing data from wave 1 (in 2006) to wave 4 (in 2012) was utilized and retirees in later life (65-89 years old, N=402) were analyzed. Latent growth modeling (LGM) and model constraint were applied using Mplus 7.3. Age, sex, household income, subjective health, depressive symptoms and elapsed time after retirement were included as control variables. Results: Linear unconditional LGM fitted the data well and showed gradual decrease in life satisfaction. Conditional LGM revealed significant associations between marital satisfaction and life satisfaction from time 1 to time 4. According to model constraint test, the size of associations between marital satisfaction and life satisfaction did not change with time. Conclusions: To sum up these results, the associations between marital satisfaction and life satisfaction were significant and relatively stable over time among retirees in later life. This study suggests one's spouse is a fundamental component of social convoy among Korean retirees in later life. Therefore, intervention programs targeted toward enhancing marital relationships among retirees' couples will help them to live a better life.

Time Domain Response of Random Electromagnetic Signals for Electromagnetic Topology Analysis Technique

  • Han, Jung-hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 2022
  • Electromagnetic topology (EMT) technique is a method to analyze each component of the electromagnetic propagation environment and combine them in the form of a network in order to effectively model the complex propagation environment. In a typical commercial communication channel model, since the propagation environment is complex and difficult to predict, a probabilistic propagation channel model that utilizes an average solution, although with low accuracy, is used. However, modeling techniques using EMT technique are considered for application of propagation and coupling analysis of threat electromagnetic waves such as electromagnetic pulses, radio wave models used in electronic warfare, local communication channel models used in 5G and 6G communications that require relatively high accuracy electromagnetic wave propagation characteristics. This paper describes the effective implementation method, algorithm, and program implementation of the electromagnetic topology (EMT) method analyzed in the frequency domain. Also, a method of deriving a response in the time domain to an arbitrary applied signal source with respect to the EMT analysis result in the frequency domain will be discussed.

Estimation of the Depth of Embedded Sheet Piles Using Two Types of Geophysical Loggings (다종 물리검층을 통한 시트파일 근입 심도 추정 연구)

  • Hwang, Sungpil;Kim, Wooseok;Jeoung, Jaehyeung;Kim, Kiju;Park, Byungsuk;Lee, Chulhee
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.525-534
    • /
    • 2022
  • This investigation used two different geophysical logging techniques to confirm the depth to which a sheet pile was driven. Depth was estimated through analysis of the movement speed and three-component movement directions of a P-wave transmitted through the ground. It was also estimated by pole-pole and pole-dipole methods using electrical data logging to measure apparent resistivity. The two methods' respective results were 9.0 m (±1.5 m) and 7.5 m. As field ground conditions will include mixtures of various materials, electrical data logging is judged to be suitable for assessing depth due to its low signal-to-noise ratio.

Modeling Soil Temperature of Sloped Surfaces by Using a GIS Technology

  • Yun, Jin I.;Taylor, S. Elwynn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.113-119
    • /
    • 1998
  • Spatial patterns of soil temperature on sloping lands are related to the amount of solar irradiance at the surface. Since soil temperature is a critical determinant of many biological processes occurring in the soil, an accurate prediction of soil temperature distribution could be beneficial to agricultural and environmental management. However, at least two problems are identified in soil temperature prediction over natural sloped surfaces. One is the complexity of converting solar irradiances to corresponding soil temperatures, and the other, if the first problem could be solved, is the difficulty in handling large volumes of geo-spatial data. Recent developments in geographic information systems (GIS) provide the opportunity and tools to spatially organize and effectively manage data for modeling. In this paper, a simple model for conversion of solar irradiance to soil temperature is developed within a GIS environment. The irradiance-temperature conversion model is based on a geophysical variable consisting of daily short- and long-wave radiation components calculated for any slope. The short-wave component is scaled to accommodate a simplified surface energy balance expression. Linear regression equations are derived for 10 and 50 cm soil temperatures by using this variable as a single determinant and based on a long term observation data set from a horizontal location. Extendability of these equations to sloped surfaces is tested by comparing the calculated data with the monthly mean soil temperature data observed in Iowa and at 12 locations near the Tennessee - Kentucky border with various slope and aspect factors. Calculated soil temperature variations agreed well with the observed data. Finally, this method is applied to a simulation study of daily mean soil temperatures over sloped corn fields on a 30 m by 30 m resolution. The outputs reveal potential effects of topography including shading by neighboring terrain as well as the slope and aspect of the land itself on the soil temperature.

  • PDF

Study on the Ku band Solid-State Power Amplifier(SSPA) through the 40 W-grade High Power MMIC Development and the Combination of High Power Modules (40 W급 고출력 MMIC 개발과 고출력 증폭기 모듈 결합을 통한 Ku 밴드 반도체형 송신기(SSPA) 개발에 관한 연구)

  • Kyoungil Na;Jaewoong Park;Youngwan Lee;Hyeok Kim;Hyunchul Kang;SoSu Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.227-233
    • /
    • 2023
  • In this paper, to substitute the existing TWTA(Travailing Wave Tube Amplifier) component in small radar system, we developed the Ku band SSPA(Solid-State Power Amplifier) based on the fabrication of power MMIC (Monolithic Microwave Integrated Circuit) chips. For the development of the 500 W SSPA, the 40 W-grade power MMIC was designed by ADS(Advanced Design System) at Keysight company with UMS GH015 library, and was processed by UMS foundry service. And 70 W main power modules were achieved the 2-way T-junction combiner method by using the 40 W-grade power MMICs. Finally, the 500 W SSPA was fabricated by the wave guide type power divider between the drive power amplifier and power modules, and power combiner with same type between power modules and output port. The electrical properties of this SSPA had 504 W output power, -58.11 dBc spurious, 1.74 °/us phase variation, and -143 dBm/Hz noise level.

Investigation of seismic response of long-span bridges under spatially varying ground motions

  • Aziz Hosseinnezhad;Amin Gholizad
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.401-416
    • /
    • 2024
  • Long-span structures, such as bridges, can experience different seismic excitations at the supports due to spatially variability of ground motion. Regarding current bridge designing codes, it is just EC 2008 that suggested some regulations to consider it and in the other codes almost ignored while based on some previous studies it is found that the effect of mentioned issue could not be neglected. The current study aimed to perform a comprehensive study about the effect of spatially varying ground motions on the dynamic response of a reinforced concrete bridge under asynchronous input motions considering soil-structure interactions. The correlated ground motions were generated by an introduced method that contains all spatially varying components, and imposed on the supports of the finite element model under different load scenarios. Then the obtained results from uniform and non-uniform excitations were compared to each other. In addition, the effect of soil-structure interactions involved and the corresponding results compared to the previous results. Also, to better understand the seismic response of the bridge, the responses caused by pseudo-static components decompose from the total response. Finally, an incremental dynamic analysis was performed to survey the non-linear behavior of the bridge under assumed load scenarios. The outcomes revealed that the local site condition plays an important role and strongly amplifies the responses. Furthermore, it was found that a combination of wave-passage and strong incoherency severely affected the responses of the structure. Moreover, it has been found that the pseudo-static component's contribution increase with increasing incoherent parameters. In addition, regarding the soil condition was considered for the studied bridge, it was found that a combination of spatially varying ground motions and soil-structure interactions effects could make a very destructive scenarios like, pounding and unseating.

Study of RF Impairments in Wideband Chirp Signal Generator (광대역 첩 신호 발생기를 위한 RF 불균형 연구)

  • Ryu, Sang-Burm;Kim, Joong-Pyo;Yang, Jeong-Hwan;Won, Young-Jin;Lee, Sang-Kon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1205-1214
    • /
    • 2013
  • Recently spaceborne SAR systems are increasing image resolution and frequency. As a high quality image resolution, the wider bandwidth is required and a wideband signal generator with RF component is very complicated and RF impairments of device is increased. Therefore, it is very important to improve performance by reducing these errors. In this study, the transmission signal of the wideband signal generator is applied to the phase noise, IQ imbalance, ripple gain, nonlinear model of high power amplifier. And we define possible structures of wideband signal generator and measure the PSLR and ISLR for the performance assesment. Also, we extract error of the amplitude and phase from the waveform and use a quadratic polynomial curve fitting and examine the performance change due to nonlinear device. Finally, we apply a high power amplifier predistortion method for non-linear error compensation. And we confirm that distortion in the output of the amplifier by intermodulation component is decreased by 15 dB.