• Title/Summary/Keyword: Component Performance

Search Result 3,594, Processing Time 0.027 seconds

A Desirability Function-Based Multi-Characteristic Robust Design Optimization Technique (호감도 함수 기반 다특성 강건설계 최적화 기법)

  • Jong Pil Park;Jae Hun Jo;Yoon Eui Nahm
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2023
  • Taguchi method is one of the most popular approaches for design optimization such that performance characteristics become robust to uncontrollable noise variables. However, most previous Taguchi method applications have addressed a single-characteristic problem. Problems with multiple characteristics are more common in practice. The multi-criteria decision making(MCDM) problem is to select the optimal one among multiple alternatives by integrating a number of criteria that may conflict with each other. Representative MCDM methods include TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution), GRA(Grey Relational Analysis), PCA(Principal Component Analysis), fuzzy logic system, and so on. Therefore, numerous approaches have been conducted to deal with the multi-characteristic design problem by combining original Taguchi method and MCDM methods. In the MCDM problem, multiple criteria generally have different measurement units, which means that there may be a large difference in the physical value of the criteria and ultimately makes it difficult to integrate the measurements for the criteria. Therefore, the normalization technique is usually utilized to convert different units of criteria into one identical unit. There are four normalization techniques commonly used in MCDM problems, including vector normalization, linear scale transformation(max-min, max, or sum). However, the normalization techniques have several shortcomings and do not adequately incorporate the practical matters. For example, if certain alternative has maximum value of data for certain criterion, this alternative is considered as the solution in original process. However, if the maximum value of data does not satisfy the required degree of fulfillment of designer or customer, the alternative may not be considered as the solution. To solve this problem, this paper employs the desirability function that has been proposed in our previous research. The desirability function uses upper limit and lower limit in normalization process. The threshold points for establishing upper or lower limits let us know what degree of fulfillment of designer or customer is. This paper proposes a new design optimization technique for multi-characteristic design problem by integrating the Taguchi method and our desirability functions. Finally, the proposed technique is able to obtain the optimal solution that is robust to multi-characteristic performances.

Anti-inflammatory activities of carrot(Daucus carota) leaf Fermented by Weizmannia coagulans KK7 (김치에서 분리한 Weizmannia coagulans KK7으로 발효한 당근 잎 추출물의 함염증 활성 연구)

  • Yoonji Lee;Boram Ko;Hyejin Hyeon;Daeju Oh;Weon-Jong Yoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.932-940
    • /
    • 2022
  • In this study, the extracts of carrot (Daucus carota var. sativa) leaf fermented with Weizmannia coagulans KK7 strain were investigated for the anti-inflammatory activities and component changes. The KK7 strain was isolated from kimchi, a Korean fermented vegetable. The high-performance liquid chromatography was performed to analyze the changes in the components of the carrot leaf extracts before and after fermentation. It was confirmed that the content of luteolin, a kind of flavonoid, was significantly increased after fermentation. The anti-inflammatory activities of the carrot leaf extracts and the fermented carrot leaf extracts were evaluated by the inhibition of NO (nitric oxide) production in LPS-induced RAW 264.7 cells. The NO scavenging ability of the fermented carrot leaf extracts was higher than the other extracts. The protein expression of iNOS, an enzyme responsible for the NO production was significantly reduced in a concentration-dependent manner by treatment with the fermented carrot leaf extracts. In conclusion, we found that the anti-inflammatory effect of carrot leaf was increased by microbial fermentation, suggesting that carrot leaf generally discarded could be used as new food and cosmetic materials through fermentation.

Development of a Signal Acquisition Device to Verify the Applicability of Millimeter Wave Tracking Radar Transmission and Receiving Components (밀리미터파 추적레이더 송·수신 구성품의 적용성 검증을 위한 신호획득장치 개발)

  • Jinkyu Choi;Youngcheol Shin;Soonil Hong;Han-Chun Ryu;Hongrak Kim;Jihan Joo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.185-190
    • /
    • 2023
  • Recently, tracking radar requires the development of millimeter wave tracking radar to acquire target information with high resolution in various environments. The development of millimeter wave tracking radar requires the development of transmission and receiving components that can be applied to the millimeter wave tracking radar, as well as verification of the applicability of the tracking radar. In order to verify the applicability of the developed transmitting and receiving components, it is necessary to develop a signal acquisition device that can control the transmitting and receiving components using the operating concept of a tracking radar and check the status of the received signal. In this paper, we implemented a signal acquisition device that can confirm the applicability of components developed for millimeter wave tracking radar. The signal acquisition device was designed to process in real time the OOOMHz center frequency and OOMHz bandwidth signals input from 4 channels to verify the received signal. In addition, component control applying the tracking radar operation concept was designed to be controlled by communication such as RS422, RS232, and SPI and generation of control signals for the transmission and receiving time. Lastly, the implemented signal acquisition device was verified through a signal acquisition device performance test.

A 2×2 MIMO Spatial Multiplexing 5G Signal Reception in a 500 km/h High-Speed Vehicle using an Augmented Channel Matrix Generated by a Delay and Doppler Profiler

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.1-10
    • /
    • 2023
  • This paper proposes a method to extend Inter-Carrier Interference (ICI) canceling Orthogonal Frequency Division Multiplexing (OFDM) receivers for 5G mobile systems to spatial multiplexing 2×2 MIMO (Multiple Input Multiple Output) systems to support high-speed ground transportation services by linear motor cars traveling at 500 km/h. In Japan, linear-motor high-speed ground transportation service is scheduled to begin in 2027. To expand the coverage area of base stations, 5G mobile systems in high-speed moving trains will have multiple base station antennas transmitting the same downlink (DL) signal, forming an expanded cell size along the train rails. 5G terminals in a fast-moving train can cause the forward and backward antenna signals to be Doppler-shifted in opposite directions, so the receiver in the train may have trouble estimating the exact channel transfer function (CTF) for demodulation. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceller is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number n to receiver sub-carrier number l is generated. In case of n≠l, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 8 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, 2×2MIMO QPSK and 16QAM modulation schemes, BER (Bit Error Rate) improvement was observed when the number of taps in the multi-tap equalizer was set to 31 or more taps, at a moving speed of 500 km/h and in an 8-pass reverse doppler shift environment.

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.

Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis (음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화)

  • Hoseok Lee;Shin-Woo Myeong;Jun-young Park;Eon-ju Park;Sungjun Heo;Nam-In Kim;Jae-hun Lee;Jae-hun Lee;Jae-Yeop Jeong;Song Jin;Jooyoung Lee;Sang Ho Lee;Chiho Kim;Sung Mook Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.412-419
    • /
    • 2023
  • Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.

A Novel Approach to a Robust A Priori SNR Estimator in Speech Enhancement (음성 향상에서 강인한 새로운 선행 SNR 추정 기법에 관한 연구)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.8
    • /
    • pp.383-388
    • /
    • 2006
  • This Paper presents a novel approach to single channel microphone speech enhancement in noisy environments. Widely used noise reduction techniques based on the spectral subtraction are generally expressed as a spectral gam depending on the signal-to-noise ratio (SNR). The well-known decision-directed(DD) estimator of Ephraim and Malah efficiently reduces musical noise under the background noise conditions, but generates the delay of the a prioiri SNR because the DD weights the speech spectrum component of the Previous frame in the speech signal. Therefore, the noise suppression gain which is affected by the delay of the a priori SNR, which is estimated by the DD matches the previous frame rather than the current one, so after noise suppression. this degrades the noise reduction performance during speech transient periods. We propose a computationally simple but effective speech enhancement technique based on the sigmoid type function for the weight Parameter of the DD. The proposed approach solves the delay problem about the main parameter, the a priori SNR of the DD while maintaining the benefits of the DD. Performances of the proposed enhancement algorithm are evaluated by ITU-T p.862 Perceptual Evaluation of Speech duality (PESQ). the Mean Opinion Score (MOS) and the speech spectrogram under various noise environments and yields better results compared with the fixed weight parameter of the DD.

A Narrative Literature Review on the Neural Substrates of Cognitive Reserve: Focusing on the Resting-state Functional Magnetic Resonance Imaging Studies (인지예비능의 신경적 기질에 대한 서술적 문헌고찰 연구 : 휴지기 기능적 자기공명영상 연구를 중심으로)

  • Hyeonsang Shin;Woohyun Seong;Bo-in Kwon;Yeonju Woo;Joo-Hee Kim;Dong Hyuk Lee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Cognitive reserve (CR) is a concept that can explain the discrepancies between the pathologic burden of the disease and clinical manifestations. It refers to the individual susceptibility to age-related brain changes and pathologies related to Alzheimer's disease, thus recognized as a factor affecting the trajectories of the disease. The purpose of this study was to explore the current states of clinical studies on neural substrates of CR in Alzheimer's disease using functional magnetic resonance imaging. We searched for clinical studies on CR using fMRI in the Pubmed, Cochrane library, RISS, KISS and ScienceON on August 14, 2023. Once the online search was finished, studies were selected manually by the inclusion criteria. Finally, we analyzed the characteristics of selected articles and reviewed the neural substrates of CR. Total thirty-four studies were included in this study. As surrogate markers of CR, not only education and occupational complexity, but also composite score and questionnaire-based method, which cover various areas of life, were mainly used. The most utilized methods in resting-state fMRI were independent component analysis, seed-based analysis, and graph theory analysis. Through the analysis, we demonstrated that neuroimaging techniques could capture the neural substrates associated with cognitive reserve. Moreover, functional connectivity of brain regions centered on prefrontal and parietal cortex and network areas such as default mode network showed a significant correlation with CR, which indicated a significant association with cognitive performance. CR may induce differential effects according to the disease status. We hope that this perspective on cognitive reserve would be helpful when conducting clinical researches on the mechanisms of traditional Korean medicine for Alzheimer's disease in the future.

A Study of Static Random Access Memory Single Event Effect (SRAM SEE) Test using 100 MeV Proton Accelerator (100 MeV 양성자가속기를 활용한 SRAM SEE(Static Random Access Memory Single Event Effect) 시험 연구)

  • Wooje Han;Eunhye Choi;Kyunghee Kim;Seong-Keun Jeong
    • Journal of Space Technology and Applications
    • /
    • v.3 no.4
    • /
    • pp.333-341
    • /
    • 2023
  • This study aims to develop technology for testing and verifying the space radiation environment of miniature space components using the facilities of the domestic 100 MeV proton accelerator and the Space Component Test Facility at the Space Testing Center. As advancements in space development progress, high-performance satellites increasingly rely on densely integrated circuits, particularly in core components components like memory. The application of semiconductor components in essential devices such as solar panels, optical sensors, and opto-electronics is also on the rise. To apply these technologies in space, it is imperative to undergo space environment testing, with the most critical aspect being the evaluation and testing of space components in high-energy radiation environments. Therefore, the Space Testing Center at the Korea testing laboratory has developed a radiation testing device for memory components and conducted radiation impact assessment tests using it. The investigation was carried out using 100 MeV protons at a low flux level achievable at the Gyeongju Proton Accelerator. Through these tests, single event upsets observed in memory semiconductor components were confirmed.

LC/MS-based metabolomics approach for selection of chemical markers by domestic production region of Schisandra chinensis (오미자(Schisandra chinensis)의 국내 산지별 화학적마커 선정을 위한 LC/MS 기반의 대사체학 접근법)

  • In Seon Kim;Seon Min Oh;Ha Eun Song;Doo-Young Kim;Dahye Yoon;Dae Young Lee;Hyung Won Ryu
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.467-476
    • /
    • 2023
  • Schisandra chinensis (S. chinensis) is a deciduous broad-leaved cave plant belonging to the Schisandraceae family and is widely distributed in East Asia including Korea, Japan, China, and Taiwan. It has been reported that the main components contained in S. chinensis include lignan compounds and triterpenoid compounds. To distinguish the characteristics of S. chinensis by production region of Korea, a discriminant was established by performing metabolite profiling and principal component analysis, a multivariate statistical analysis technique. As a result, 16 types of triterpenoids, 9 types of lignan, and 1 type each of flavonoid, phenylpropanoid, and fatty acid were identified. In addition, through multivariate statistical analysis, it was confirmed that the four groups in Danyang, Moongyeong, Geochang, and Pyeongchang were divided, by applying the s-plot model of orthogonal partial least squares discriminant analysis. Biomarkers were identified: lanostane, cycloartane, schiartane triterpenoid, and dibenzocyclo-octadiene lignan were identified as chemical markers, respectively.