• Title/Summary/Keyword: Component Assembly

Search Result 364, Processing Time 0.025 seconds

Design and Tool of Component Assembly based on Architecture (아키텍쳐 기반의 컴포넌트 조립 시스템 설계 및 지원도구의 개발)

  • Lee, Seung-Yun;Kwon, Oh-Choen;Shin, Gue-Sang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.457-460
    • /
    • 2002
  • 복잡한 응용 프로그램을 빠르게 개발하고 이의 유지보수가 용이하도록 하기 위해 재사용 가능한 컴포넌트 기반의 소프트웨언 개발(CBD: Component-Based Development)개념이 확산되고 있고, 이와 관련 되어 컴포넌트 재사용성을 높이기 위한 EJB, COM, CCM 등과 같은 컴포넌트 모델과 이의 개발 및 이미 개발된 컴포넌트를 재사용하고자 하는 연구가 다양하게 진행되고 있다. 컴포넌트를 기반으로 시스템을 효과적으로 구성하기 위해서는 컴포넌트들이 서로 정확하게 결합하여 작동할 수 있는 아키텍쳐를 기반으로 컴포넌트의 조림 작업이 이루어져야 한다. 잘 정의된 아키텍쳐가 존재하면, 시스템이 상위수준에서 어떻게 구성되어 있고, 어떠한 기능을 수행하는지의 방향을 제시해 주므로 조립하는 시스템이 제공하는 서비스를 추상화하여 표현할 수 있다. 본 논문은 제 삼자에 의해 개발된 컴포넌트들의 조림을 통한 시스템 개발을 지원하기 위하여 아키텍쳐 기반의 시스템 설계 방법을 제안하고 이를 지원하는 도구인 COBALT(Component-Based Application DeveLopment Tool) 조립도구의 아키텍쳐 모델러를 소개한다.

  • PDF

Design and Implementation of Component Adaptation Supporting Tool (컴포넌트 개조 지원 도구의 설계 및 구현)

  • Kim, Jeong-Ah;Kwon, Oh-Cheon;Choi, Yoo-Hee;Shin, Gyu-Sang;Yoon, Shim
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.903-914
    • /
    • 2002
  • In this research, the technique and tool for the adaptation of components are suggested. While reusing a component or assembling components, component adaptation should be required since the interfaces of component to be assembled might not be exactly matched. Sometimes, other attributes are needed for new business features or even the same business concept. So, in reusing or assembling a component, component adaptation techniques are essentially required. In this research, we proposed the following Component Adaptation by Binary Component Adaptation Techniques : and Component Adaptation by Adaptation Components. Also, we constructed a component adaptation supporting tool. As the results, we can adapt the existing components without source code and can reuse the existing components when the components do not meet new requirements or can not be directly connected with other components to be integrated.

Prediction of the welding distortion of large steel structure with mechanical restraint using equivalent load methods

  • Park, Jeong-ung;An, Gyubaek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.315-325
    • /
    • 2017
  • The design dimension may not be satisfactory at the final stage due to the welding during the assembly stage, leading to cutting or adding the components in large structure constructions. The productivity is depend on accuracy of the welding quality especially at assembly stage. Therefore, it is of utmost importance to decide the component dimension during each assembly stage considering the above situations during the designing stage by exactly predicting welding deformation before the welding is done. Further, if the system that predicts whether welding deformation is equipped, it is possible to take measures to reduce deformation through FE analysis, helping in saving time for correcting work by arresting the parts which are prone to having welding deformation. For the FE analysis to predict the deformation of a large steel structure, calculation time, modeling, constraints in each assembly stage and critical welding length have to be considered. In case of fillet welding deformation, around 300 mm is sufficient as a critical welding length of the specimen as proposed by the existing researches. However, the critical length in case of butt welding is around 1000 mm, which is far longer than that suggested in the existing researches. For the external constraint, which occurs as the geometry of structure is changed according to the assembly stage, constraint factor is drawn from the elastic FE analysis and test results, and the magnitude of equivalent force according to constraint is decided. The comparison study for the elastic FE analysis result and measurement for the large steel structure based on the above results reveals that the analysis results are in the range of 80-118% against measurement values, both matching each other well. Further, the deformation of fillet welding in the main plate among the total block occupies 66-89%, making welding deformation in the main plate far larger than the welding deformation in the longitudinal and transverse girders.

A study on performance evaluation of rod rubber bushing under static and fatigue loadings (토크 로드 부품의 정하중 및 피로하중하에서의 성능평가 연구)

  • 이순복;김완두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1320-1329
    • /
    • 1990
  • A static performance tester for a torque rod assembly was developed to evaluate the three characteristics of the rod rubber bushing : radial spring characteristic, thrust spring characteristic, and rotational torque characteristic. Among the various schemes considered in the conceptual design stage, the final versatile type was determined to perform three different tests in one machine. The performance testing machine carried out radial spring test, thrust spring test, and torque test of the torque rod assembly. Static performance of the torque rod assembly was evaluated with the tester developed and fatigue strength of the assembly was also tested with the servo-hydraulic structural fatigue testing machine. The life of the component was found to be related with the rubber quality and adhesionability between the rubber and the steel rod. The optimum rubber hardness was experimentally found by changing the chemical compositions of rubber, and the adhesion was improved by optimizing the shape of the outer section of a the rubber, this study ensured the development of a reliable torque rod assembly.

System-level Analysis of a Fan-motor Assembly for Vacuum Cleaner (진공청소기용 팬-모터 어셈블리의 시스템-레벨 분석)

  • Park, Chang-Hwan;Park, Kyung-Hyun;Chang, Kyung-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.5-14
    • /
    • 2017
  • A fan-motor assembly in a vacuum cleaner is analyzed through system-level analysis method. This system consisted of three components, a fan, motor, and the flow resistance of the motor, or of the vacuum cleaner. System-level analysis method is characterized by the combination of torque matching at a constant throttling condition between the fan and the motor and the pressure drop at a constant flow rate due to the flow resistance of the motor, or of the vacuum cleaner. The performance characteristics of the fan-motor assembly and the vacuum cleaner system could be predicted over the whole range of operation, based on the characteristics of each component. The predicted performance of the vacuum cleaner system through system-level analysis agreed well with the experimental results within 4.5% difference of pressure and 6% difference of the efficiency. The effect of flow resistance of a motor is investigated and it is found that the efficiency decrease of fan-motor assembly at the constant flow rate due to the flow resistance of a motor is determined by the flow resistance ratio(FRR), which is defined as a ratio of flow resistance of motor and the flow resistance of a constant throttling condition of a given point. The fan-motor assembly(S2 model) was modified to reduce the FRR from 9.0% to 2.4% and the experimental result shows that the efficiency of S2 model was improved by about 3% at best efficiency point.

Thermal Characteristics of Rotating Anode X-ray Tube with Emissivity in Aging Process for Digital Radiography

  • Lee, Seok Moon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.125-131
    • /
    • 2015
  • We investigated the thermal characteristics of rotating anode X-ray tube to develop it for digital radiography by using computer simulation. The target which is the area of the anode struck by electrons is the most important component to get a long life of X-ray tube. So we analyze the thermal characteristics of the target and rotor assembly according to their emissivity by using ANSYS transient thermal simulation and then compare with the measured data of the target temperature operating in aging process of X-ray tube. Especially, keeping the lead coated layer as the role of metal lubricant on ball bearing enables to prevent the noise in rotating anode. The simulation result showed that its temperature was under the melting point of the lead in X-ray tube for digital radiography with 1.2 mm large focal spot 0.6 mm small focal spot and 150 kV tube voltage. We also investigated the relationship between the diameter of the anode shaft and the temperature of the anode and rotor assembly. It has been confirmed that the smaller anode shaft could be good for the rotor thermal characteristics.

Acceleration Test of Membrane-Electrode Assembly in PEMFC (고분자연료전지의 전해질-전극 접합체의 열화 가속시험)

  • Lee, Jung-Hun;Yoon, Young-Gi;Jung, Eun-Ha;Lee, Won-Yong;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.93-96
    • /
    • 2007
  • Recently, much attentions have been paid on the commercialization of PEMFC, especially for the applications of residential and portable. In order to achieve the early commercialization of PEMFC, thee are two hurdles to overcome. One is cost down and the other is improvement of durability of the system components. Numerous companies have tried to reduce the production cost and the main research topics have been changed from performance to durability improvement. In this work, acceleration test were performed to find and evaluate the main reason of degradation of the MEA(membrane-electrode assembly) which is one of the core component of the PEMFC system. Based upon the test results, a way to make durable MEA was suggested. Acceleration tests were made by applying high voltage of 1.2V to the several kinds of single cells to increase the growth of catalyst particles. Cell performance, ac-impedance and electrochemically active area measurements were made atfter every 8 hours of acceleration test. Degradations of catalyst and membrane were examined by SEM, TEM and XRD. Obtained results were discussed in terms of structural stability and loss of catalyt and ionomers in the electrode layer. In addition, the way to make highly durable MEA was suggested.

  • PDF

Basic Theory on a Multi-Mode CVT (다중모드 무단 변속기의 구조이론에 관한 연구)

  • Lee, Jin-Won;Jang, Uk-Jin;Park, Jin-Ho;Park, Yeong-Il;Lee, Jang-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2477-2486
    • /
    • 2000
  • A planetary gear assembly is a key component to combine and/or split a power from the source. With a planetary gear assembly, a continuously variable unit extends its capacity by means of power bra nching mechanism. Power branching with one planetary gear assembly and one continuously variable unit is categorized into 12 basic types. Each type represents peculiar power transmitting characteristics. Additionally, a multi-mode (range) continuously variable transmission can be designed with accompanying clutches. A multi-mode continuously variable transmission changes the path through which the source power is transmitted. Each path has its own features, such as high efficiency. In this paper, some design principles are examined such as, criteria to guarantee the minimum power efficiency, and constraints to guarantee the smooth mode shift after discussing well-known features of multi-mode M mathematically.

Performance Test of Turbopump Assembly for 75 Ton Liquid Rocket Engine Using Model Fluid (75톤급 액체로켓엔진용 터보펌프 조립체의 상사매질 성능시험)

  • Hong, Soon-Sam;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.56-61
    • /
    • 2011
  • Performance test of a full-scale turbopump assembly for a 75 ton class liquid rocket engine was carried out at full speed. Model fluid was used as a working medium: liquid nitrogen for the oxidizer pump, water for the fuel pump, and hot air for the turbine. The turbopump was operated stably, satisfying the performance requirements. Head coefficient and flow coefficient of the pumps remained constant at the speed-increasing period. In terms of performance characteristics of pumps and turbine, the results from the turbopump assembly test showed a good agreement with those from the turbopump component tests.

Determination of Thermal Contact Conductance of an Injection Mold Assembly for the Prediction of Mold Surface Temperature

  • Lee, Ki-Yeon;Kim, Kyeong-Min;Park, Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.1008-1012
    • /
    • 2012
  • Injection molds are fabricated by assembling a number of plates in which mold core and cavity components are inserted. The assembled structure causes a number of contact interfaces between each component where the heat transfer is affected by the thermal contact resistance. However, the mold assembly has been treated as a one body in numerical analyses of injection molding, which has a limitation in predicting the mold temperature distribution during the molding cycle. In this study, a numerical approach that considers the thermal contact effect is proposed to predict the heat transfer characteristics of an injection mold assembly. To find the thermal contact conductance between the mold core and plate, a number of finite element (FE) simulations were performed with the design of experiment (DOE) and statistical analysis. Thus, the heat transfer analyses using the obtained conductance values can provide more reliable results than conventional one-body simulations.