• Title/Summary/Keyword: Complex plants

Search Result 636, Processing Time 0.021 seconds

Re-identification of Colletotrichum acutatum Species Complex in Korea and Their Host Plants

  • Le Dinh Thao;Hyorim Choi;Yunhee Choi;Anbazhagan Mageswari;Daseul Lee;Seung-Beom Hong
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.384-396
    • /
    • 2023
  • Colletotrichum acutatum species complex is one of the most important groups in the genus Colletotrichum with a high species diversity and a wide range of host plants. C. acutatum and related species have been collected from different plants and locations in Korea and deposited into the Korean Agricultural Culture Collection (KACC), National Institute of Agricultural Sciences since the 1990s. These fungal isolates were previously identified based mainly on morphological characteristics, and a limitation of molecular data was provided. To confirm the identification of species, 64 C. acutatum species complex isolates in KACC were used in this study for DNA sequence analyses of six loci: nuclear ribosomal internal transcribed spacers (ITS), betatubulin 2 (TUB2), histone-3 (HIS3), glyceraldehyde3-phosphate dehydrogenase (GAPDH), chitin synthase 1 (CHS-1), and actin (ACT). The molecular analysis revealed that they were identified in six different species of C. fioriniae (24 isolates), C. nymphaeae (21 isolates), C. scovillei (12 isolates), C. chrysanthemi (three isolates), C. lupini (two isolates), and C. godetiae (one isolate), and a novel species candidate. We compared the hosts of KACC isolates with "The List of Plant Diseases in Korea", previous reports in Korea and global reports and found that 23 combinations between hosts and pathogens could be newly reported in Korea after pathogenicity tests, and 12 of these have not been recorded in the world.

Selection of Tolerant Species among Korean Major Woody Plants to Restore Yeocheon Industrial Complex Area (여천공업단지의 복원을 위한 우리나라 주요 목본식물 중 내성종의 선발)

  • 유영한;이창석;김준호
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.337-344
    • /
    • 1998
  • To select tolerant species among the Korean major woody plants for restoring disturbed ecosystems by air and soil pollution, we transplanted the seedlings of 56 species in control and polluted sites within Yeocheon industrial complex area, and compared their aboveground growth characteristics such as total branch length, total leaf weight, and maximum photozynthetic rate. Tolerant species growting better in polluted site than in control site was Quercus variabilis, Pinus thunbergii, Q. aliena, P. densiflora, Styrax japonica, Alnus firma, Celtis sinensis, Elaeagnus umbellata, Q. serrata, japonica, Sorbus alnifolia, and Q. acutissimia in local tree occuring within polluted area group (80%), Ailanthus altissima in street tree group (20%), Populus tomentiglandulosa and A. hirsuta var. sibirica in fast growing tree group (50%), Acer ginala and Abies holophylla in late successional tree group (20%), Betulla platyphylla var. japonica, Acer truncatum, A. palmatum, Syringa dilatata, and Rosa multifora in garden tree group (38%), and Q. rubura, and Robinia pseudoacacia in foreign restoring tree group (20%), respectively. The remaining plant species, 37 species (57% of total species), were classified into sensitive species to pollution. Those tolerant species can be utilized for restoration of the degraded ecosystem in this polluted area.

  • PDF

Arabidopsis cyclin D2 expressed in rice forms a functional cyclin-dependent kinase complex that enhances seedling growth

  • Oh, Se-Jun;Kim, Su-Jung;Kim, Youn Shic;Park, Su-Hyun;Ha, Sun-Hwa;Kim, Ju-Kon
    • Plant Biotechnology Reports
    • /
    • v.2 no.4
    • /
    • pp.227-231
    • /
    • 2008
  • D-class cyclins play important roles in controlling the cell cycle in development and in response to external signals by forming the regulatory subunit of cyclin-dependent kinase (CDK) complexes. To evaluate the effects of D-class cyclins in transgenic rice plants, Arabidopsis cyclin D2 gene (CycD2) was linked to the maize ubiquitin1 promoter (Ubi1) and introduced into rice by the Agrobacterium-mediated transformation method. Genomic deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and Western blot hybridizations of the Ubi1:-CycD2 plants revealed copy number of transgene and its increased expression in leaf and callus cells at messenger RNA (mRNA) and/or protein levels. The H1 kinase assay using the immunoprecipitates of protein extracts from the Ubi1:CycD2 plants and nontransgenic controls demonstrated that the introduced Arabidopsis CycD2 forms a functional CycD2/CDK complex with an unidentified CDK of rice. Shoot and root growth was enhanced in the Ubi1:CycD2 seedlings compared with nontransgenic controls, together, suggesting that Arabidopsis cyclin D2 interacts with a rice cyclin-dependent kinase, consequently enhancing seedling growth.

Non-coding RNAs Associated with Biotic and Abiotic Stresses in Plants

  • Kang, Han-Chul;Yoon, Sang-Hong;Lee, Chang-Muk;Koo, Bon-Sung
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • Many of biochemical or physiological processes can be regulated by non-coding RNAs as well as coding RNAs in plants, animals and microbes. Recently, many small RNAs including microRNAs (miRNAs) and endogenous small interference RNAs (siRNAs) and long non-coding RNAs have been discovered from ubiquitous organisms including plants. Biotic and abiotic stresses are main causal agents of crop losses all over the world. Much efforts have been performed for understanding the complex mechanism of stress responses. Up to date, many of these researches have been related with the identification and investigation of stress-related proteins, showing limitation to resolve the complex mechanism. Recently, non-coding RNAs as well as coding genes have been gradually interested because of its potential roles in plant stress responses as well as other biophysical aspects. In this review, various potential roles of non-coding RNAs, especially miRNAs and siRNAs, are reviewed in relation with plant biotic and abiotic stresses.

Characteristics of Invasive Alien Plant by Land-Use Type Focused on Goyang Siksa district (고양식사지구 토지이용유형별 침입외래식물의 특성 연구)

  • Cha, Doo-Won;Choi, Jun-Young;Oh, Choong-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.3
    • /
    • pp.1-22
    • /
    • 2020
  • This study was conducted as a basic data for preparing future management alternatives by analyzing the status and characteristics of invasive alien plants by land-use type based on the formation of a new town in Goyang Siksa district. As a result, the invasive alien plants in the Goyang Siksa district were 20 families 46 genera 57 taxa; according to the land-use type, the residential area(Wi City apartment complex) is 7 families 10 genera 12 taxa, the public facilities area(Dongguk University campus) is 17 families 40 genera 47 taxa, the mixed forest is 5 families 10 genera 10 taxa, the rice paddy is 5 families 6 genera 7 taxa, river(Mt. Gyeondal creek) is 7 families 13 genera 15 taxa were appeared. The life-form of invasive alien plants in Goyang Siksa district is annuals, the origin is America, the introduction time is third period(1962~the present), and the diffusion grade is wide spread(5 grade) species. It was higher than other types. The naturalization index by location was 31.9% in river(Mt. Gyeondal creek), 21.2% in rice paddy, 16.7% in mixed forest, 15.5% in public facilities area(Dongguk University campus), and 8.5% in residential area(Wi City apartment complex). As a result of comparing the naturalization index by regions with the previous studies, it is judged that there are differences due to the environment such as urbanization progress, size, area, population inflow and location conditions. Although many new towns have been established to date, there is a lack of research on flora (including invasive alien plants) as a basic data for preparing management alternatives. Therefore, Through this study, basic data on the management of exotic plants by land use unit in urban areas can be provided.

A Study on the Verification of Network Flow Analysis Methodology of CHECWORKS Program used in Pipe Wall Thinning Management (배관감육관리에 활용되는 CHECWORKS 프로그램의 열수력해석 방법론 검증에 관한 연구)

  • Seo, Hyuk Ki;Hwang, Kyeong Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • In general, pipelines at nuclear power plants are affected by various types of degradation mechanisms and may be ruptured after gradually thinning. FAC (Flow-Accelerated Corrosion) is typical aging mechanism affecting the secondary side piping system. In Korea nuclear power plants, CHECWORKS program have been used for management of wall thinning damages. However, sometimes, CHECWORKS program shows wrong results at the stage of NFA (Network Flow Analysis) in case of complex pipelines. This paper describes the calculation results of pressure drop in a complex pipeline and single line by using the CHECWORKS program and the analysis results are compared with those of engineering calculation results including errors between them.

An integrated system for synthesis of plant-wide control structure

  • Choi, In-Seok;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1265-1270
    • /
    • 1990
  • A prototype integrated system and its theories for distributed SISO control structure synthesis of complete chemical plants is developed. The scope of this work includes control structure synthesis not only of simple units with unspecified control loops but also of the complex process at preliminary and basic design stage. Hierarchical approach and dual-decomposition strategy (that is multi-layer decomposition and multi-echelon decomposition) is applied to this system. Because automatic control structure synthesis of complex plants is a problem defined as a series of knowledge-intensive tasks within multiple spaces, the established methodology is complemented by not only techniques from knowledge-based expert systems but also shortcut and rigorous control theories. This system is used for education of control designers, process engineers, operators and students as well as for operability studying, in-line and on-line process control structure synthesis.

  • PDF

Type specimens of Korean vascular plants in the Herbarium of the Komarov Botanical Institute (LE)

  • Grabovskaya-Borodina, Alisa E.;Illarionova, Irina D.;Tatanov, Ivan V.;Lee, Byoung-Yoon;Lim, Chae Eun
    • Journal of Species Research
    • /
    • v.2 no.2
    • /
    • pp.191-202
    • /
    • 2013
  • The article provides information on type specimens of 150 taxa of vascular plants from Korea, kept in the Herbarium of the Komarov Botanical Institute of the Russian Academy of Sciences. For all specimens, type category is indicated. Lectotypes for the names of Clematis brachyura Maxim., C. spectabilis Palib., Corydalis wilfordii Regel, Poa viridula Palib., Polygonum marretii H. L$\acute{e}$v., P. sagittatum L. var. hallaisanense H. L$\acute{e}$v., P. taquetii H. L$\acute{e}$v. and P. thunbergii Sieb. et Zucc. var. coreana H. L$\acute{e}$v. were designated. Type specimens examined in this article belong to the taxa described by Russian botanists V.L. Komarov, K.J. Maximovicz and I.V. Palibin, French botanist A.A.H. L$\acute{e}$veill$\acute{e}$ (some with co-author E. Vaniot) and others.

Fast and Precise: How to Measure Meiotic Crossovers in Arabidopsis

  • Kim, Heejin;Choi, Kyuha
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.273-283
    • /
    • 2022
  • During meiosis, homologous chromosomes (homologs) pair and undergo genetic recombination via assembly and disassembly of the synaptonemal complex. Meiotic recombination is initiated by excess formation of DNA double-strand breaks (DSBs), among which a subset are repaired by reciprocal genetic exchange, called crossovers (COs). COs generate genetic variations across generations, profoundly affecting genetic diversity and breeding. At least one CO between homologs is essential for the first meiotic chromosome segregation, but generally only one and fewer than three inter-homolog COs occur in plants. CO frequency and distribution are biased along chromosomes, suppressed in centromeres, and controlled by pro-CO, anti-CO, and epigenetic factors. Accurate and high-throughput detection of COs is important for our understanding of CO formation and chromosome behavior. Here, we review advanced approaches that enable precise measurement of the location, frequency, and genomic landscapes of COs in plants, with a focus on Arabidopsis thaliana.

Comparative Study on the Growth Condition of Landscape Woody Plants according to the Ground Structure - Focusing on Manseok Beach Town Complex 2, Incheon - (지반구조에 따른 수목 생육상태 비교 연구 - 인천광역시 만석비치타운 단지를 대상으로 -)

  • Cho, Sung-Ho;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.63-82
    • /
    • 2022
  • The purpose of this study is to compare growth condition of landscape woody plants growing on the different ground structures in apartment complex. I chose Manseok Beach Town Complex 2, in Manseok-dong, Seo-gu, Incheon which has both natural and artificial ground as a subject site. Analysis of three phases of soil showed that artificial ground had average liquid phase of 30.89%, artificial ground mounding 33.88% and natural ground 24.40%. It means that artificial ground has higher water content than natural ground despite having same earthiness. It is believed that artificial ground is not as well drained as natural ground even though it is connected to the natural ground and has a deep soil depth because of mounding. Comparative study between woody plants on natural ground and those on artificial ground demonstrated that trees on natural ground grew 40.4% compared to those on artificial ground(0.875mm more) in terms of diameter growth. Average diameter growth of trees on natural ground was 3.040mm against 2.165mm for those on artificial ground. All 19 tree species which were measured for root diameter growth showed similar or higher growth on natural ground than on artificial ground. When it comes to growth of height, arborvitae showed highest growth on natural ground, followed by Thuja occidentalis, Pinus strobus, Magnolia denudata, Diospyros kaki and Aesculus turbinata. I measured branch growth and rate of leaf adherence of Pinus strobus. Average annual rate of branch growth of woody plants on natural ground was twice as high as those on artificial ground. I could conclude that ground structure influences branch growth of Pinus strobus. Statistics analysis of tree damage demonstrated significant result, meaning that there is a difference in the average damage rate depending on structure of ground. In order to validate growth difference by planting ground, I conducted T-Test of growth of diameter, root diameter, branch and height on woody plants growing on natural and artificial ground. As a result, it is believed that there is a difference in the growth of trees depending on the ground structure. Putting all these results together demonstrates that woody plants on natural ground generally grow better than those on artificial ground, which means ground structure does have an influence on the environment of growth of trees.