• Title/Summary/Keyword: Complex network analysis

Search Result 693, Processing Time 0.026 seconds

A neural-based predictive model of the compressive strength of waste LCD glass concrete

  • Kao, Chih-Han;Wang, Chien-Chih;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.457-465
    • /
    • 2017
  • The Taiwanese liquid crystal display (LCD) industry has traditionally produced a huge amount of waste glass that is placed in landfills. Waste glass recycling can reduce the material costs of concrete and promote sustainable environmental protection activities. Concrete is always utilized as structural material; thus, the concrete compressive strength with a variety of mixtures must be studied using predictive models to achieve more precise results. To create an efficient waste LCD glass concrete (WLGC) design proportion, the related studies utilized a multivariable regression analysis to develop a compressive strength waste LCD glass concrete equation. The mix design proportion for waste LCD glass and the compressive strength relationship is complex and nonlinear. This results in a prediction weakness for the multivariable regression model during the initial growing phase of the compressive strength of waste LCD glass concrete. Thus, the R ratio for the predictive multivariable regression model is 0.96. Neural networks (NN) have a superior ability to handle nonlinear relationships between multiple variables by incorporating supervised learning. This study developed a multivariable prediction model for the determination of waste LCD glass concrete compressive strength by analyzing a series of laboratory test results and utilizing a neural network algorithm that was obtained in a related prior study. The current study also trained the prediction model for the compressive strength of waste LCD glass by calculating the effects of several types of factor combinations, such as the different number of input variables and the relevant filter for input variables. These types of factor combinations have been adjusted to enhance the predictive ability based on the training mechanism of the NN and the characteristics of waste LCD glass concrete. The selection priority of the input variable strategy is that evaluating relevance is better than adding dimensions for the NN prediction of the compressive strength of WLGC. The prediction ability of the model is examined using test results from the same data pool. The R ratio was determined to be approximately 0.996. Using the appropriate input variables from neural networks, the model validation results indicated that the model prediction attains greater accuracy than the multivariable regression model during the initial growing phase of compressive strength. Therefore, the neural-based predictive model for compressive strength promotes the application of waste LCD glass concrete.

Development of Artificial Intelligence Joint Model for Hybrid Finite Element Analysis (하이브리드 유한요소해석을 위한 인공지능 조인트 모델 개발)

  • Jang, Kyung Suk;Lim, Hyoung Jun;Hwang, Ji Hye;Shin, Jaeyoon;Yun, Gun Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.773-782
    • /
    • 2020
  • The development of joint FE models for deep learning neural network (DLNN)-based hybrid FEA is presented. Material models of bolts and bearings in the front axle of tractor, showing complex behavior induced by various tightening conditions, were replaced with DLNN models. Bolts are modeled as one-dimensional Timoshenko beam elements with six degrees of freedom, and bearings as three-dimensional solid elements. Stress-strain data were extracted from all elements after finite element analysis subjected to various load conditions, and DLNN for bolts and bearing were trained with Tensorflow. The DLNN-based joint models were implemented in the ABAQUS user subroutines where stresses from the next increment are updated and the algorithmic tangent stiffness matrix is calculated. Generalization of the trained DLNN in the FE model was verified by subjecting it to a new loading condition. Finally, the DLNN-based FEA for the front axle of the tractor was conducted and the feasibility was verified by comparing with results of a static structural experiment of the actual tractor.

Analysis of Technology Association Rules Between CPC Codes of the 'Internet of Things(IoT)' Patent (CPC 코드 기반 사물인터넷(IoT) 특허의 기술 연관성 규칙 분석)

  • Shim, Jaeruen
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.493-498
    • /
    • 2019
  • This study deals with the analysis of the technology association rules between CPC codes of the Internet of Things(IoT) patent, the core of the Fourth Industrial Revolution ICT-based technology. The association rules between CPC codes were extracted using R, an open source for data mining. To this end, we analyzed 369 of the 605 patents related to the Internet of Things filed with the Patent Office until July 2019, with a complex CPC code, up to the subclass-level. As a result of the technology association rules, CPC codes with high support were [H04W ${\rightarrow}$ H04L](18.2%), [H04L ${\rightarrow}$ H04W](18.2%), [G06Q ${\rightarrow}$ H04L](17.3%), [H04L ${\rightarrow}$ G06Q](17.3%), [H04W ${\rightarrow}$ G06Q](9.8%), [G06Q ${\rightarrow}$ H04W](9.8%), [G06F ${\rightarrow}$ H04L](7.9%), [H04L ${\rightarrow}$ G06F](7.9%), [G06F ${\rightarrow}$ G06Q](6.2%), [G06Q ${\rightarrow}$ G06F](6.2%). After analyzing the technology interconnection network, the core CPC codes related to technology association rules are G06Q and H04L. The results of this study can be used to predict future patent trends.

A Study on Policy Trends and Location Pattern Changes in Smart Green-Related Industries (스마트그린 관련 산업의 정책동향과 입지패턴 변화 연구)

  • Young Sun Lee;Sun Bae Kim
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.38-52
    • /
    • 2024
  • Digital transformation industry contributes to the improvement of productivity in overall industrial production, the smart green industry for carbon neutrality and sustainable growth is growing as a future industry. The purpose of this paper is to explore the status and role of the industry in the future industry innovation ecosystem through the analysis of the growth drivers and location pattern changes of the smart green industry. The industry is on the rise in both metropolitan and non-metropolitan areas, and the growth of the industry can be seen in non-metropolitan and non-urban areas. In particular, due to the smart green industrial complex pilot project, the creation of Gwangju Jeonnam Innovation City, and the promotion of new and renewable energy policies, the emergence of core aggregation areas (HH type) in the coastal areas of Honam and Chungcheongnam-do, and the formation of isolated centers (HL type) in the Gyeongsang region, new and renewable energy production companies are being accumulated in non-metropolitan areas. Therefore, the smart green industry is expected to promote the formation of various specialized spokes in non-urban areas in the future industrial innovation ecosystem that forms a multipolar hub-spoke network structure, where policy factors are the triggers for growth.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

Evaluating Global Container Ports' Performance Considering the Port Calls' Attractiveness (기항 매력도를 고려한 세계 컨테이너 항만의 성과 평가)

  • Park, Byungin
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.3
    • /
    • pp.105-131
    • /
    • 2022
  • Even after the improvement in 2019, UNCTAD's Liner Shipping Connectivity Index (LSCI), which evaluates the performance of the global container port market, has limited use. In particular, since the liner shipping connectivity index evaluates the performance based only on the distance of the relationship, the performance index combining the port attractiveness of calling would be more efficient. This study used the modified Huff model, the hub-authority algorithm and the eigenvector centrality of social network analysis, and correlation analysis for 2007, 2017, and 2019 data of Ocean-Commerce, Japan. The findings are as follows: Firstly, the port attractiveness of calling and the overall performance of the port did not always match. However, according to the analysis of the attractiveness of a port calling, Busan remained within the top 10. Still, the attractiveness among other Korean ports improved slowly from the low level during the study period. Secondly, Global container ports are generally specialized for long-term specialized inbound and outbound ports by the route and grow while maintaining professionalism throughout the entire period. The Korean ports continue to change roles from analysis period to period. Lastly, the volume of cargo by period and the extended port connectivity index (EPCI) presented in this study showed a correlation from 0.77 to 0.85. Even though the Atlantic data is excluded from the analysis and the ship's operable capacity is used instead of the port throughput volume, it shows a high correlation. The study result would help evaluate and analyze global ports. According to the study, Korean ports need a long-term strategy to improve performance while maintaining professionalism. In order to maintain and develop the port's desirable role, it is necessary to utilize cooperation and partnerships with the complimentary port and attract shipping companies' services calling to the complementary port. Although this study carried out a complex analysis using a lot of data and methodologies for an extended period, it is necessary to conduct a study covering ports around the world, a long-term panel analysis, and a scientific parameter estimation study of the attractiveness analysis.

Effect of food-related lifestyle, and SNS use and recommended information utilization on dining out (혼밥 및 외식소비 관련 식생활라이프스타일과 SNS 이용 및 추천정보활용의 영향)

  • Jin A Jang
    • Journal of Nutrition and Health
    • /
    • v.56 no.5
    • /
    • pp.573-588
    • /
    • 2023
  • Purpose: This study aimed to examine social networking service (SNS) use and recommended information utilization (SURU) according to the food-related lifestyles (FRLs) of consumers and analyze how the interaction between the FRL and SURU affects the practice of eating alone and visiting restaurants. Methods: Data on 4,624 adults in their 20s to 50s were collected from the 2021 Consumer Behavior Survey for Food. Statistical methods included factor analysis, K-means cluster analysis, the complex samples general linear model, the complex samples Rao-Scott χ2 test, and the general linear model. Results: The following three factors were extracted from the FRL data: Convenience pursuit, rational consumption pursuit, and gastronomy pursuit, and the subjects were classified into three groups, namely the rational consumption, convenient gastronomy, and smart gourmet groups. An examination of the difference in SURU according to the FRL showed that the smart gourmet group had the highest score. The result of analyzing the effects of the FRL and SURU on eating alone revealed that both the main effect and the interaction effect were significant (p < 0.01, p < 0.001). The higher the SURU, the higher the frequency of eating alone in the convenience pursuit, and gastronomy pursuit groups. The main and interaction effects of the FRL and SURU on the frequency of eating out were also significant (p < 0.01, p < 0.001). In all the FRL groups, the higher the SURU level, the higher the frequency of visiting restaurants. Specifically, the two groups with convenience and gastronomic tendencies showed a steeper increase. Conclusion: This study provides important basic data for research on consumer behavior related to food SNS, market segmentation of restaurant consumers, and development of marketing strategies using SNS in the future.

The Stock Portfolio Recommendation System based on the Correlation between the Stock Message Boards and the Stock Market (인터넷 주식 토론방 게시물과 주식시장의 상관관계 분석을 통한 투자 종목 선정 시스템)

  • Lee, Yun-Jung;Kim, Gun-Woo;Woo, Gyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.10
    • /
    • pp.441-450
    • /
    • 2014
  • The stock market is constantly changing and sometimes the stock prices unaccountably plummet or surge. So, the stock market is recognized as a complex system and the change on the stock prices is unpredictable. Recently, many researchers try to understand the stock market as the network among individual stocks and to find a clue about the change of the stock prices from big data being created in real time from Internet. We focus on the correlation between the stock prices and the human interactions in Internet especially in the stock message boards. To uncover this correlation, we collected and investigated the articles concerning with 57 target companies, members of KOSPI200. From the analysis result, we found that there is no significant correlation between the stock prices and the article volume, but the strength of correlation between the article volume and the stock prices is relevant to the stock return. We propose a new method for recommending stock portfolio base on the result of our analysis. According to the simulated investment test using the article data from the stock message boards in 'Daum' portal site, the returns of our portfolio is about 1.55% per month, which is about 0.72% and 1.21% higher than that of the Markowitz's efficient portfolio and that of the KOSPI average respectively. Also, the case using the data from 'Naver' portal site, the stock returns of our proposed portfolio is about 0.90%, which is 0.35%, 0.40%, and 0.58% higher than those of our previous portfolio, Markowitz's efficient portfolio, and KOSPI average respectively. This study presents that collective human behavior on Internet stock message board can be much helpful to understand the stock market and the correlation between the stock price and the collective human behavior can be used to invest in stocks.

An Empirical Study on the Effect of CRM System on the Performance of Pharmaceutical Companies (고객관계관리 시스템의 수준이 BSC 관점에서의 기업성과에 미치는 영향 : 제약회사를 중심으로)

  • Kim, Hyun-Jung;Park, Jong-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.43-65
    • /
    • 2010
  • Facing a complex environment driven by a decade, many companies are adopting new strategic frameworks such as Customer Relationship Management system to achieve sustainable profitability as well as overcome serious competition for survival. In many business areas, CRM system advanced a great deal in a matter of continuous compensating the defect and overall integration. However, pharmaceutical companies in Korea were slow to accept them for usesince they still have a tendency of holding fast to traditional way of sales and marketing based on individual networks of sales representatives. In the circumstance, this article tried to empirically address current status of CRM system as well as the effects of the system on the performance of pharmaceutical companies by applying BSC method's four perspectives, from financial, customer, learning and growth and internal process. Survey by e-mail and post to employers and employees who were working in pharma firms were undergone for the purpose. Total 113 cases among collected 140 ones were used for the statistical analysis by SPSS ver. 15 package. Reliability, Factor analysis, regression were done. This study revealed that CRM system had a significant effect on improving financial and non-financial performance of pharmaceutical companies as expected. Proposed regression model fits well and among them, CRM marketing information system shed the light on substantial impact on companies' outcome given profitability, growth and investment. Useful analytical information by CRM marketing information system appears to enable pharmaceutical firms to set up effective marketing and sales strategies, these result in favorable financial performance by enhancing values for stakeholderseventually, not to mention short-term profit and/or mid-term potential to growth. CRM system depicted its influence on not only financial performance, but also non-financial fruit of pharmaceutical companies. Further analysis for each component showed that CRM marketing information system were able to demonstrate statistically significant effect on the performance like the result of financial outcome. CRM system is believed to provide the companies with efficient way of customers managing by valuable standardized business process prompt coping with specific customers' needs. It consequently induces customer satisfaction and retentionto improve performance for long period. That is, there is a virtuous circle for creating value as the cornerstone for sustainable growth. However, the research failed to put forward to evidence to support hypothesis regarding favorable influence of CRM sales representative's records assessment system and CRM customer analysis system on the management performance. The analysis is regarded to reflect the lack of understanding of sales people and respondents between actual work duties and far-sighted goal in strategic analysis framework. Ordinary salesmen seem to dedicate short-term goal for the purpose of meeting sales target, receiving incentive bonus in a manner-of-fact style, as such, they tend to avail themselves of personal network and sales and promotional expense rather than CRM system. The study finding proposed a link between CRM information system and performance. It empirically indicated that pharmaceutical companies had been implementing CRM system as an effective strategic business framework in order for more balanced achievements based on the grounded understanding of both CRM system and integrated performance. It suggests a positive impact of supportive CRM system on firm performance, especially for pharmaceutical industry through the initial empirical evidence. Also, it brings out unmet needs for more practical system design, improvement of employees' awareness, increase of system utilization in the field. On the basis of the insight from this exploratory study, confirmatory research by more appropriate measurement tool and increased sample size should be further examined.

An Empirical Study on Improvement model for Measuring of Project Similarity (과제 유사도 측정 개선모형에 관한 실증적 연구)

  • Jung, Ok-Nam;Rhew, Sung-Yul;Kim, Jong-Bae
    • Journal of Digital Contents Society
    • /
    • v.12 no.4
    • /
    • pp.457-465
    • /
    • 2011
  • The annual R&D investment in Korea increased by an average of 12.2percent during the last 5 years. Therefore, prevention of duplicate projects being performed became an important factor in promoting the efficiency of R&D investment and the originality of R&D projects. On measuring the similarity of projects, the measurement model used to estimate the accuracy of the similarity is crucial. In this paper, we propose an advanced measurement model on checking the similarity of R&D projects for promoting the efficiency of R&D investment. The proposed model is made up of the following steps for the model measurement, sampling and analyzing. During the sampling step, we append the abstract of R&D reports on the search engine based on document vector. We then measure the similarity on projects to use research title network which is consists of the compound keyword and the weight of items on during the analysis. The proposed method improved the accuracy for measuring the similarity of projects by an average of 0.19 over the existing search engine and by 9.25 over the simple keyword search on R&D projects. On searching the similarity with the appending conditions and high sampling, it improved the accuracy of measuring the similarity of R&D projects.