• Title/Summary/Keyword: Complex modulus

Search Result 236, Processing Time 0.027 seconds

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (진동응답을 최소화하는 비구속형 제진보의 제진 부위 최적설계)

  • Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.829-835
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beam is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. Vibration responses are calculated by using the modal superposition principle, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in suppressing nitration responses by means of unconstrained damping layer treatment.

MAXIMUM CURVES OF TRANSCENDENTAL ENTIRE FUNCTIONS OF THE FORM $E^{p(z)}$

  • Kim, Jeong-Heon;Kim, Youn-Ouck;Kim, Mi-Hwa
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.451-457
    • /
    • 2011
  • The function f(z) = $e^{p(z)}$ where p(z) is a polynomial of degree n has 2n Julia lines. Julia lines of $e^{p(z)}$ divide the complex plane into 2n equal sectors with the same vertex at the origin. In each sector, $e^{p(z)}$ has radial limits of 0 or innity. Main results of the paper are concerned with maximum curves of $e^{p(z)}$. We deal with some properties of maximum curves of $e^{p(z)}$ and we give some examples of the maximum curves of functions of the form $e^{p(z)}$.

Effects of Abrasive Size and Impact Angle on the Contact Stress in Abrasive Machining Process (입자연마가공에서의 입자크기 및 충돌각의 영향에 대한 고찰)

  • Kwak, Haslomi;Kim, Wook-Bae;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • In this study, finite element analysis of particle-surface collision using 2-dimensional elements was performed to observe the effects of abrasive size and impact angle. The result of the simulation on the change in abrasive size revealed that larger abrasive particle induced larger contact stress due to force transfer through slurry fluid as the particle moved and pushed the fluid. This observation brought an important finding that the slurry fluid could make the workpiece surface soften and then change the mechanical properties of the surface layer such as elastic modulus and yield strength. As for the impact angle, it was found that the contact stress increased with the angle of impact and jumped up at a specific angle. Such result would be attributed to the complex effects of the impact velocity and angle.

Length Optimization for Unconstrained Visco-elastic Damping Layer of Beams (비구속형 점탄성 제진층을 갖는 보의 제진층 길이 최적화)

  • Lee, Doo-Ho;Hwang, Woo-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.938-946
    • /
    • 2003
  • Length of an unconstrained viscoelastic damping layer on beams is determined to maximizeloss factor using a numerical search method. The fractional derivative model can describe damping characteristics of viscoelastic damping materials accurately, and is used to represent nonlinearity of complex modulus with frequencies and temperatures. Equivalent flexural rigidity of the unconstrained beam is obtained using Ross, Ungar, Kelvin[RUK] equation. The loss factors of partially covered unconstrained beam are calculated by a modal strain energy method. Optimal lengths of the unconstrained viscoelastic damping layer of beams are identified with ambient temperatures and thickness ratios of beam and damping layer by using a finite-difference-based steepest descent method.

Influence of Stacking Sequence Conditions the Absorbed Energy Characteristics of Composite Tubes (경량화용 복합재 튜브의 적층구성이 흡수에너지 특성에 미치는 영향)

  • Kim, Yeong-Nam;Kim, Ji-Hun;Yang, In-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.34-41
    • /
    • 2001
  • This study is to investigate the energy absorption characteristics of CFRP(Carbon-Fiber Reinforced Plastics) tubes on static and dynamic tests. Axial static compression tests have been carried out using the static testing machine(Shin-gang buckling testing machine) and dynamic compression tests have been utilized using an vertical crushing testing machine. When such tubes are subjected to crushing loads, the response is complex and depends on the interaction between the different mechanisms that could control the crushing process. The collapse characteristics and energy absorption have been examined for various tubes. Energy absorption of the tubes are increased as changes in the lay-up which may increase the modulus of tubes. The results have been varied significantly as a function of ply orientation and interlaminar number.

  • PDF

Length Optimization for Unconstrained Visco-elastic Damping Layer of Beams (비구속형 점탄성 제진층을 갖는 보의 제진층 길이 최적화)

  • 이두호;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.665-671
    • /
    • 2003
  • Length of an unconstrained viscoelastic damping layer on beams is determined to maximize loss factor using a numerical search method. The fractional derivative model can describe damping characteristics of the viscoelastic damping material, and is used to represent nonlinearity of complex modulus with frequencies and temperatures. Equivalent flexural rigidity of the unconstrained beam is obtained using Ross, Ungar, Kerwin(RUK) equation. The loss factors of partially covered unconstrained beam are calculated by a modal strain energy method. Optimal lengths of the unconstrained viscoelastic damping layer of beams are obtained with respect to ambient temperatures and thickness ratios of beam and damping layer.

  • PDF

Synthesis and Physical Properties of pH-sensitive Semi-IPN Hydrogels Based on Poly( dimethylaminoethyl methacrylate-co-PEG dimethacrylate) and Poly(acrylic acid)

  • Kim Goo-Myun;Jo Won-Ho
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.223-228
    • /
    • 2006
  • Hydrogels of semi-interpenetrating polymer networks (semi-IPNs) were prepared by two step reactions. Dimethylaminoethyl methacrylate (DMAM) and poly(ethylene glycol)-dimethacrylate (PEGDM) were copolymerized to yield hydrogels, and then acrylic acid (AA) monomer were adsorbed in the hydrogels followed by polymerization of AA to produce semi-IPNs. The swelling behavior of semi-IPNs depends largely on pH of medium, showing that the degree of swelling of the semi-IPNs exhibits a minimum at pH 6.0. It is observed that the elastic modulus of semi-IPNs is closely related to its swelling behavior.

Estimation of Variability for Complex Modulus of Rubber Considering Temperature and Material Uncertainties (온도와 물성의 불확실성을 고려한 고무의 복소계수 변동성 평가)

  • Lee, Doo-Ho;Hwang, In-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.362-365
    • /
    • 2011
  • 본 논문에서는 통계적인 방법을 이용하여 점탄성 제진재인 합성고무의 물성에 대한 변동성을 평가하는 방법을 제안하고 측정데이터를 이용하여 합성고무에 대한 평가를 수행하였다. 고무 물성의 불확실성 인자로는 외기 온도의 변화와 실험 데이터의 오차 및 점탄성 제진모델의 오차를 고려하였다. 고무는 분수차 미분 모델로 표현되었고 온도의 영향은 비선형 이동계수모델을 도입하여 복소계수로 나타내어 동강성과 감쇠를 표현하였다. 이러한 물성모델을 바탕으로 고무에 대한 물성 실험데이터와 물성계수의 확률밀도함수 사이에 정의된 우도함수를 최대화하는 통계적 보정방법을 이용하여 물성모델의 물질계수들에 대한 변동성을 추정하였다.

  • PDF

Studies on the Ternary Blends of Liquid Crystalline Polymer and Polyesters

  • Kim, Seong-Hun;Kang, Seong-Wook
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.83-91
    • /
    • 2000
  • Thermotropic liquid crystalline polymer made up of poly(p-hydroxybenzoate) (PHB)-poly(ethylene terephthalate)(PET) 8/2 copolyester, poly(ethylene 2,6-naphthalate) (PEN) and PET were mechanically blended to pursue the liquid crystalline phase of ternary blends. Complex viscosities of blends decreased with increasing temperature and PHB content. DSC thermal analysis indicated that glass transition temperature (Tg) and melting temperature (Tm) of blends increased with increasing PHB content. Both tensile strength and initial modulus increased with raising PHB content and take-up speed of monofilaments. In the WAXS diagram, only PEN crystal reflection at 2Θ=$15.5^{\circ}C$ appeared but PET crystal reflection was not shown in all compositions. The degree of transesterification and randomness of blends increased with blending time but sequential length of both PEN and PET segment decreased.

  • PDF

Probabilistic Prediction Model for the Cyclic Freeze-Thaw Deteriorations in Concrete Structures (콘크리트 구조물의 반복적 동결융해에 의한 확률론적 열화예측모델)

  • Cho, Tae-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.957-960
    • /
    • 2006
  • In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the Response Surface Method (RSM) is used. RSM has merits when the other probabilistic simulation techniques can not guarantee the convergence of probability of occurrence or when the others can not differentiate the derivative terms of limit state functions, which are composed of random design variables in the model of complex system or the system having higher reliability. For composing limit state function, the important parameters for cyclic freeze-thaw-deterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used as input parameters of RSM. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw for specimens show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages by the cyclic freeze-thaw by the use of proposed prediction method.

  • PDF