• 제목/요약/키워드: Complex matrix model

검색결과 189건 처리시간 0.021초

Influence of complex geological structure on horizontal well productivity of coalbed methane

  • Qin, Bing;Shi, Zhan-Shan;Sun, Wei-Ji;Liang, Bing;Hao, Jian-Feng
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.145-154
    • /
    • 2022
  • Complex geological conditions have a great influence on the mining of coalbed methane (CBM), which affects the extraction efficiency of CBM. This investigation analyzed the complicated geological conditions in the Liujia CBM block of Fuxin. A geological model of heterogeneities CBM reservoirs was established to study the influence of strike direction of igneous rocks and fault structures on horizontal well layout. Subsequently, the dual-porosity and dual-permeability mathematical model was established, which considers the dynamic changes of porosity and permeability caused by gas adsorption, desorption, pressure change. The results show that the production curve is in good agreement with the actual by considering gas seepage in matrix pores in the model. Complicated geological structures affect the pressure expansion of horizontal wells, especially, the closer to the fault structure, the more significant the effect, the slower the pressure drop, and the smaller the desorption area. When the wellbore extends to the fault, the pressure expansion is blocked by the fault and the productivity is reduced. In the study area, the optimal distance to the fault is 70 m. When the horizontal wellbore is perpendicular to the direction of coal seam igneous rock, the productivity is higher than that of parallel igneous rock, and the horizontal well bore should be perpendicular to the cleat direction. However, the well length is limited due to the dense distribution of igneous rocks in the Liujia CBM block. Therefore, the horizontal well pumping in the study area should be arranged along the direction of igneous rock and parallel plane cleats. It is found that the larger the area surrounded by igneous rock, the more favorable the productivity. In summary, the reasonable layout of horizontal wells should make full use of the advantages of igneous rock, faults and other complex geological conditions to achieve the goal of high and stable production.

부구조화 기법을 연동한 반복적인 동적 축소법 (II) - 비비례 감쇠 구조 시스템 - (Iterated Improved Reduced System (IIRS) Method Combined with Sub-Structuring Scheme (II) - Nonclassically Damped Structural Systems -)

  • 최동수;김현기;조맹효
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.221-230
    • /
    • 2007
  • An iterated improved reduced system (IIRS) procedure combined with sub-structuring scheme for nonclassically damped structural systems is presented. For dynamic analysis of such systems, complex eigenproperties are required to incorporate properly the nonclassical damping effect. In complex structural systems, the equations of motion are written in the state space from. Thus, the number of degrees of freedom of the new equations of motion and the size of the associated eigenvalue problem required to obtain the complex eigenvalues and eigenvectors are doubled. Iterated IRS method is an efficient reduction technique because the eigenproperties obtained in each iteration step improve the condensation matrix in the next iteration step. However, although this reduction technique reduces the size of problem drastically, it is not efficient to apply this technique to a single domain finite element model with degrees of freedom over several thousands. Therefore, for a practical application of the reduction method, accompanying sub-structuring scheme is necessary. In the present study, iterated IRS method combined with sub-structuring scheme for nonclssically damped structures is developed. Numerical examples demonstrate the convergence and the efficiency of a newly developed scheme.

셀 매개변수에 의한 탄성파 반사주시 토모그래피 (Seismic Reflection Tomography by Cell Parameterization)

  • 서영탁;신창수;고승원
    • 지구물리와물리탐사
    • /
    • 제6권2호
    • /
    • pp.95-100
    • /
    • 2003
  • 본 연구에서는 복잡한 지질구조에 대해서도 신속하고 효율적으로 주시를 계산할 수 있는 Straight Ray Technique(SRT)을 이용한 반사주시 토모그래피 역산 알고리듬을 개발하였다. 역산을 위한 초기 속도모델은 지층경계면에 임피던스 변화를 갖는 상속도 모델을 사용하였다. 실제 속도모델의 반사주시와 초기 속도모델의 반사주시 차이를 계산하여 각각의 요소마다 주시의 오차를 줄이는 방법인 가우스-뉴튼 알고리듬을 이용하여 역산온 수행하였다. 자코비안의 요소는 파선이 지나가는 거리함수로 구성되며, 이를 최소자승형태의 근사 헤시안 행렬로 구성하여 역산을 수행하였다. 역산시 해가 수렴할 수 있도록 근사 헤시안 행렬의 대각성분에 일정한 감쇠인자를 더하였다. 역산된 속도모델을 이용하여 Kirchhoff구조보정을 실시한 결과 실제 속도모델구조에 근사한 단면영상을 얹을 수 있었다.

자원 공유 플레이스 추이적 행렬을 이용한 효율적인 교착상태 확인 정책 (An Efficient Deadlock Detection Policy Using the Transitive Matrix of Resource Share Places)

  • 김종욱;이종근
    • 한국시뮬레이션학회논문지
    • /
    • 제17권3호
    • /
    • pp.75-83
    • /
    • 2008
  • 여러 개의 작업이 동시에 작동 할 때 서로 다른 작업에서 공유자원을 사용하기 위하여 상대방의 작업이 끝나기를 기다리는 상태를 교착상태라 하며 이는 시스템의 효율성과 경제성 제고에 가장 중요한 문제 중 하나이다. 지금까지 이러한 교착상태 확인은 도달성(reachability)기법이나 서브 넷(Subnet)으로 분리하여 분석하는 기법 등이 가장 많이 사용되었으나, 분석에 필요한 시간과 노력, 복잡성과 효율성에 있어서 효과적이지 못한 단점을 가지고 있다. 본 연구는 패트리 넷(Petri Net)에서 모든 플레이스(Place) 간의 관계를 나타내는 추이적(Transitive)행렬을 이용하여 교착상태가 나타날 가능성이 있는 자원공유 플레이스를 분석하여 교착상태를 검증하는 정책을 제시한다. 이를 위하여 교착상태를 확인할 수 있는 자원공유 플레이스의 관계를 정의하고, 유연생산시스템 모델을 이용하여 제안한 알고리즘의 성과를 검증한다.

  • PDF

지능형 디지털 재설계 기법을 이용한 원자력 발전소 증기발생기의 강인 제어기 설계 (Design of Robust Controller for the Steam Generator in the Nuclear Power Plant Using Intelligent Digital Redesign)

  • 김주원;박진배;조광래;주영훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.203-206
    • /
    • 2002
  • This paper describes fuzzy control methodologies of the steam generator which have nonlinear characteristics in the nuclear power plant. Actually, the steam generator part of the power generator has a problem to control water level because it has complex components and nonlinear characteristics. In order to control nonlinear terms of the model, Takagj-Sugeno (75) fuzzy system is used to design a controller. In designing procedure, intelligent digital redesign method is used to control the nonlinear system. This digital controller keeps the performance of the analog controller. Simulation examples are included for ensuring the proposed control method.

  • PDF

Joint parameter identification of a cantilever beam using sub-structure synthesis and multi-linear regression

  • Ingole, Sanjay B.;Chatterjee, Animesh
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.423-437
    • /
    • 2013
  • Complex structures are usually assembled from several substructures with joints connecting them together. These joints have significant effects on the dynamic behavior of the assembled structure and must be accurately modeled. In structural analysis, these joints are often simplified by assuming ideal boundary conditions. However, the dynamic behavior predicted on the basis of the simplified model may have significant errors. This has prompted the researchers to include the effect of joint stiffness in the structural model and to estimate the stiffness parameters using inverse dynamics. In the present work, structural joints have been modeled as a pair of translational and rotational springs and frequency equation of the overall system has been developed using sub-structure synthesis. It is shown that using first few natural frequencies of the system, one can obtain a set of over-determined system of equations involving the unknown stiffness parameters. Method of multi-linear regression is then applied to obtain the best estimate of the unknown stiffness parameters. The estimation procedure has been developed for a two parameter joint stiffness matrix.

가압주조법을 이용한 금속복합재료 제조공정의 침투와 열전달 해석 (Numerical Simulation of Infiltration and Solidification for Squeeze Casting of MMCs)

  • 정창규;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.250-253
    • /
    • 2004
  • A finite element model is developed for the process of squeeze casting of metal matrix composites. The fluid flow and the heat transfer are fundamental phenomena in squeeze casting. The equations for the clear fluid flow and the flow in porous media are used to simulate the transient metal flow. To describe heat transfer in the solidification of molten aluminum, the energy equation is written in terms of temperature and enthalpy. A direct iteration technique is used to solve the resulting nonlinear algebraic equations. The cooling curves and temperature distribution during infiltration and solidification were calculated for a simplified model with pure aluminum. The developed program can be used for squeeze casting process of complex geometry, boundary conditions and processing parameter optimization.

  • PDF

유연성 영향 계수를 이용한 구조물의 결합부 해석 (Analysis of Structural joints Using Flexibility Influence Coefficient)

  • 이재운;고강호;이수일;이장무
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.831-836
    • /
    • 1994
  • This paper presents rational modeling and analysis method for complex structures with various structural joints. For modeling of structural joint, a general modeling technique is newly proposed by flexibility influence coefficient and inverse of flexibility matrix and static reduction concept which is applied to the retained DOFs(degrees of freedom) of detailed finite element model of struction joints. By this method,joint model with contact surface. which can not be reduced by the general reduction theory such as Guyan reduction theory ,can be reduced effectively. And in this method, the nonlinearity of the contact surface can be linearized within a proper range and the boundary effects of joint region can be excluded. Using the proposed method, screwed joint,glued joint and bolted joint are analyzed. And the effectiveness of the proposed method is verified by experiments.

  • PDF

대칭 조건을 갖는 2-자유절점 공간 트러스의 평형점과 안정성 (Equilibrium Point and Stability of Double-Free-Nodes Space Truss Under Symmetric Condition)

  • 하준홍;손수덕;이승재;황경주
    • 한국공간구조학회논문집
    • /
    • 제19권4호
    • /
    • pp.69-76
    • /
    • 2019
  • A stadium roof that uses the pin-jointed spatial truss system has to be designed by taking into account the unstable phenomenon due to the geometrical non-linearity of the long span. This phenomenon is mainly studied in the single-free-node model (SFN) or double-free-node model (DFN). Unlike the simple SFN model, the more complex DFN model has a higher order of characteristic equations, making analysis of the system's stability complicated. However, various symmetric conditions can allow limited analysis of these problems. Thus, this research looks at the stability of the DFN model which is assumed to be symmetric in shape, and its load and equilibrium state. Its governing system is expressed by nonlinear differential equations to show the double Duffing effect. To investigate the dynamic behavior and characteristics, we normalize the system of the model in terms of space and time. The equilibrium points of the system unloaded or symmetrically loaded are calculated exactly. Furthermore, the stability of these points via the roots of the characteristic equation of a Jacobian matrix are classified.

Modeling, simulation and structural analysis of a fluid catalytic cracking (FCC) process

  • Kim, Sungho;Urm, Jaejung;Kim, Dae Shik;Lee, Kihong;Lee, Jong Min
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2327-2335
    • /
    • 2018
  • Fluid catalytic cracking (FCC) is an important chemical process that is widely used to produce valuable petrochemical products by cracking heavier components. However, many difficulties exist in modeling the FCC process due to its complexity. In this study, a dynamic process model of a FCC process is suggested and its structural observability is analyzed. In the process modeling, yield function for the kinetic model of the riser reactor was applied to explain the product distribution. Hydrodynamics, mass balance and energy balance equations of the riser reactor and the regenerator were used to complete the modeling. The process model was tested in steady-state simulation and dynamic simulation, which gives dynamic responses to the change of process variables. The result was compared with the measured data from operating plaint. In the structural analysis, the system was analyzed using the process model and the process design to identify the structural observability of the system. The reactor and regenerator unit in the system were divided into six nodes based on their functions and modeling relationship equations were built based on nodes and edges of the directed graph of the system. Output-set assignment algorithm was demonstrated on the occurrence matrix to find observable nodes and variables. Optimal locations for minimal addition of measurements could be found by completing the whole output-set assignment algorithm of the system. The result of this study can help predict the state more accurately and improve observability of a complex chemical process with minimal cost.