• 제목/요약/키워드: Complex machine

검색결과 905건 처리시간 0.022초

Comparison of Deep Learning Models Using Protein Sequence Data (단백질 기능 예측 모델의 주요 딥러닝 모델 비교 실험)

  • Lee, Jeung Min;Lee, Hyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제11권6호
    • /
    • pp.245-254
    • /
    • 2022
  • Proteins are the basic unit of all life activities, and understanding them is essential for studying life phenomena. Since the emergence of the machine learning methodology using artificial neural networks, many researchers have tried to predict the function of proteins using only protein sequences. Many combinations of deep learning models have been reported to academia, but the methods are different and there is no formal methodology, and they are tailored to different data, so there has never been a direct comparative analysis of which algorithms are more suitable for handling protein data. In this paper, the single model performance of each algorithm was compared and evaluated based on accuracy and speed by applying the same data to CNN, LSTM, and GRU models, which are the most frequently used representative algorithms in the convergence research field of predicting protein functions, and the final evaluation scale is presented as Micro Precision, Recall, and F1-score. The combined models CNN-LSTM and CNN-GRU models also were evaluated in the same way. Through this study, it was confirmed that the performance of LSTM as a single model is good in simple classification problems, overlapping CNN was suitable as a single model in complex classification problems, and the CNN-LSTM was relatively better as a combination model.

A Study on the i-YOLOX Architecture for Multiple Object Detection and Classification of Household Waste (생활 폐기물 다중 객체 검출과 분류를 위한 i-YOLOX 구조에 관한 연구)

  • Weiguang Wang;Kyung Kwon Jung;Taewon Lee
    • Convergence Security Journal
    • /
    • 제23권5호
    • /
    • pp.135-142
    • /
    • 2023
  • In addressing the prominent issues of climate change, resource scarcity, and environmental pollution associated with household waste, extensive research has been conducted on intelligent waste classification methods. These efforts range from traditional classification algorithms to machine learning and neural networks. However, challenges persist in effectively classifying waste in diverse environments and conditions due to insufficient datasets, increased complexity in neural network architectures, and performance limitations for real-world applications. Therefore, this paper proposes i-YOLOX as a solution for rapid classification and improved accuracy. The proposed model is evaluated based on network parameters, detection speed, and accuracy. To achieve this, a dataset comprising 10,000 samples of household waste, spanning 17 waste categories, is created. The i-YOLOX architecture is constructed by introducing the Involution channel convolution operator and the Convolution Branch Attention Module (CBAM) into the YOLOX structure. A comparative analysis is conducted with the performance of the existing YOLO architecture. Experimental results demonstrate that i-YOLOX enhances the detection speed and accuracy of waste objects in complex scenes compared to conventional neural networks. This confirms the effectiveness of the proposed i-YOLOX architecture in the detection and classification of multiple household waste objects.

Research on BGP dataset analysis and CyCOP visualization methods (BGP 데이터셋 분석 및 CyCOP 가시화 방안 연구)

  • Jae-yeong Jeong;Kook-jin Kim;Han-sol Park;Ji-soo Jang;Dong-il Shin;Dong-kyoo Shin
    • Journal of Internet Computing and Services
    • /
    • 제25권1호
    • /
    • pp.177-188
    • /
    • 2024
  • As technology evolves, Internet usage continues to grow, resulting in a geometric increase in network traffic and communication volumes. The network path selection process, which is one of the core elements of the Internet, is becoming more complex and advanced as a result, and it is important to effectively manage and analyze it, and there is a need for a representation and visualization method that can be intuitively understood. To this end, this study designs a framework that analyzes network data using BGP, a network path selection method, and applies it to the cyber common operating picture for situational awareness. After that, we analyze the visualization elements required to visualize the information and conduct an experiment to implement a simple visualization. Based on the data collected and preprocessed in the experiment, the visualization screens implemented help commanders or security personnel to effectively understand the network situation and take command and control.

Study on the Performance Evaluation of Encoding and Decoding Schemes in Vector Symbolic Architectures (벡터 심볼릭 구조의 부호화 및 복호화 성능 평가에 관한 연구)

  • Youngseok Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • 제17권4호
    • /
    • pp.229-235
    • /
    • 2024
  • Recent years have seen active research on methods for efficiently processing and interpreting large volumes of data in the fields of artificial intelligence and machine learning. One of these data processing technologies, Vector Symbolic Architecture (VSA), offers an innovative approach to representing complex symbols and data using high-dimensional vectors. VSA has garnered particular attention in various applications such as natural language processing, image recognition, and robotics. This study quantitatively evaluates the characteristics and performance of VSA methodologies by applying five VSA methodologies to the MNIST dataset and measuring key performance indicators such as encoding speed, decoding speed, memory usage, and recovery accuracy across different vector lengths. BSC and VT demonstrated relatively fast performance in encoding and decoding speeds, while MAP and HRR were relatively slow. In terms of memory usage, BSC was the most efficient, whereas MAP used the most memory. The recovery accuracy was highest for MAP and lowest for BSC. The results of this study provide a basis for selecting appropriate VSA methodologies depending on the application area.

Artificial Intelligence-Enhanced Neurocritical Care for Traumatic Brain Injury : Past, Present and Future

  • Kyung Ah Kim;Hakseung Kim;Eun Jin Ha;Byung C. Yoon;Dong-Joo Kim
    • Journal of Korean Neurosurgical Society
    • /
    • 제67권5호
    • /
    • pp.493-509
    • /
    • 2024
  • In neurointensive care units (NICUs), particularly in cases involving traumatic brain injury (TBI), swift and accurate decision-making is critical because of rapidly changing patient conditions and the risk of secondary brain injury. The use of artificial intelligence (AI) in NICU can enhance clinical decision support and provide valuable assistance in these complex scenarios. This article aims to provide a comprehensive review of the current status and future prospects of AI utilization in the NICU, along with the challenges that must be overcome to realize this. Presently, the primary application of AI in NICU is outcome prediction through the analysis of preadmission and high-resolution data during admission. Recent applications include augmented neuromonitoring via signal quality control and real-time event prediction. In addition, AI can integrate data gathered from various measures and support minimally invasive neuromonitoring to increase patient safety. However, despite the recent surge in AI adoption within the NICU, the majority of AI applications have been limited to simple classification tasks, thus leaving the true potential of AI largely untapped. Emerging AI technologies, such as generalist medical AI and digital twins, harbor immense potential for enhancing advanced neurocritical care through broader AI applications. If challenges such as acquiring high-quality data and ethical issues are overcome, these new AI technologies can be clinically utilized in the actual NICU environment. Emphasizing the need for continuous research and development to maximize the potential of AI in the NICU, we anticipate that this will further enhance the efficiency and accuracy of TBI treatment within the NICU.

Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation (영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소)

  • Kim Yu-Seop;Chang Jeong-Ho
    • The KIPS Transactions:PartB
    • /
    • 제11B권6호
    • /
    • pp.749-758
    • /
    • 2004
  • In this paper, we propose a new method utilizing only raw corpus without additional human effort for disambiguation of target word selection in English-Korean machine translation. We use two data-driven techniques; one is the Latent Semantic Analysis(LSA) and the other the Probabilistic Latent Semantic Analysis(PLSA). These two techniques can represent complex semantic structures in given contexts like text passages. We construct linguistic semantic knowledge by using the two techniques and use the knowledge for target word selection in English-Korean machine translation. For target word selection, we utilize a grammatical relationship stored in a dictionary. We use k- nearest neighbor learning algorithm for the resolution of data sparseness Problem in target word selection and estimate the distance between instances based on these models. In experiments, we use TREC data of AP news for construction of latent semantic space and Wail Street Journal corpus for evaluation of target word selection. Through the Latent Semantic Analysis methods, the accuracy of target word selection has improved over 10% and PLSA has showed better accuracy than LSA method. finally we have showed the relatedness between the accuracy and two important factors ; one is dimensionality of latent space and k value of k-NT learning by using correlation calculation.

Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base (지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구)

  • Kim, JaeHun;Lee, Myungjin
    • Journal of Intelligence and Information Systems
    • /
    • 제25권1호
    • /
    • pp.43-61
    • /
    • 2019
  • Development of technologies in artificial intelligence has been rapidly increasing with the Fourth Industrial Revolution, and researches related to AI have been actively conducted in a variety of fields such as autonomous vehicles, natural language processing, and robotics. These researches have been focused on solving cognitive problems such as learning and problem solving related to human intelligence from the 1950s. The field of artificial intelligence has achieved more technological advance than ever, due to recent interest in technology and research on various algorithms. The knowledge-based system is a sub-domain of artificial intelligence, and it aims to enable artificial intelligence agents to make decisions by using machine-readable and processible knowledge constructed from complex and informal human knowledge and rules in various fields. A knowledge base is used to optimize information collection, organization, and retrieval, and recently it is used with statistical artificial intelligence such as machine learning. Recently, the purpose of the knowledge base is to express, publish, and share knowledge on the web by describing and connecting web resources such as pages and data. These knowledge bases are used for intelligent processing in various fields of artificial intelligence such as question answering system of the smart speaker. However, building a useful knowledge base is a time-consuming task and still requires a lot of effort of the experts. In recent years, many kinds of research and technologies of knowledge based artificial intelligence use DBpedia that is one of the biggest knowledge base aiming to extract structured content from the various information of Wikipedia. DBpedia contains various information extracted from Wikipedia such as a title, categories, and links, but the most useful knowledge is from infobox of Wikipedia that presents a summary of some unifying aspect created by users. These knowledge are created by the mapping rule between infobox structures and DBpedia ontology schema defined in DBpedia Extraction Framework. In this way, DBpedia can expect high reliability in terms of accuracy of knowledge by using the method of generating knowledge from semi-structured infobox data created by users. However, since only about 50% of all wiki pages contain infobox in Korean Wikipedia, DBpedia has limitations in term of knowledge scalability. This paper proposes a method to extract knowledge from text documents according to the ontology schema using machine learning. In order to demonstrate the appropriateness of this method, we explain a knowledge extraction model according to the DBpedia ontology schema by learning Wikipedia infoboxes. Our knowledge extraction model consists of three steps, document classification as ontology classes, proper sentence classification to extract triples, and value selection and transformation into RDF triple structure. The structure of Wikipedia infobox are defined as infobox templates that provide standardized information across related articles, and DBpedia ontology schema can be mapped these infobox templates. Based on these mapping relations, we classify the input document according to infobox categories which means ontology classes. After determining the classification of the input document, we classify the appropriate sentence according to attributes belonging to the classification. Finally, we extract knowledge from sentences that are classified as appropriate, and we convert knowledge into a form of triples. In order to train models, we generated training data set from Wikipedia dump using a method to add BIO tags to sentences, so we trained about 200 classes and about 2,500 relations for extracting knowledge. Furthermore, we evaluated comparative experiments of CRF and Bi-LSTM-CRF for the knowledge extraction process. Through this proposed process, it is possible to utilize structured knowledge by extracting knowledge according to the ontology schema from text documents. In addition, this methodology can significantly reduce the effort of the experts to construct instances according to the ontology schema.

Multi-Variate Tabular Data Processing and Visualization Scheme for Machine Learning based Analysis: A Case Study using Titanic Dataset (기계 학습 기반 분석을 위한 다변량 정형 데이터 처리 및 시각화 방법: Titanic 데이터셋 적용 사례 연구)

  • Juhyoung Sung;Kiwon Kwon;Kyoungwon Park;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • 제25권4호
    • /
    • pp.121-130
    • /
    • 2024
  • As internet and communication technology (ICT) is improved exponentially, types and amount of available data also increase. Even though data analysis including statistics is significant to utilize this large amount of data, there are inevitable limits to process various and complex data in general way. Meanwhile, there are many attempts to apply machine learning (ML) in various fields to solve the problems according to the enhancement in computational performance and increase in demands for autonomous systems. Especially, data processing for the model input and designing the model to solve the objective function are critical to achieve the model performance. Data processing methods according to the type and property have been presented through many studies and the performance of ML highly varies depending on the methods. Nevertheless, there are difficulties in deciding which data processing method for data analysis since the types and characteristics of data have become more diverse. Specifically, multi-variate data processing is essential for solving non-linear problem based on ML. In this paper, we present a multi-variate tabular data processing scheme for ML-aided data analysis by using Titanic dataset from Kaggle including various kinds of data. We present the methods like input variable filtering applying statistical analysis and normalization according to the data property. In addition, we analyze the data structure using visualization. Lastly, we design an ML model and train the model by applying the proposed multi-variate data process. After that, we analyze the passenger's survival prediction performance of the trained model. We expect that the proposed multi-variate data processing and visualization can be extended to various environments for ML based analysis.

Animal Infectious Diseases Prevention through Big Data and Deep Learning (빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단)

  • Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
    • Journal of Intelligence and Information Systems
    • /
    • 제24권4호
    • /
    • pp.137-154
    • /
    • 2018
  • Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.

Color Analyses on Digital Photos Using Machine Learning and KSCA - Focusing on Korean Natural Daytime/nighttime Scenery - (머신러닝과 KSCA를 활용한 디지털 사진의 색 분석 -한국 자연 풍경 낮과 밤 사진을 중심으로-)

  • Gwon, Huieun;KOO, Ja Joon
    • Trans-
    • /
    • 제12권
    • /
    • pp.51-79
    • /
    • 2022
  • This study investigates the methods for deriving colors which can serve as a reference to users such as designers and or contents creators who search for online images from the web portal sites using specific words for color planning and more. Two experiments were conducted in order to accomplish this. Digital scenery photos within the geographic scope of Korea were downloaded from web portal sites, and those photos were studied to find out what colors were used to describe daytime and nighttime. Machine learning was used as the study methodology to classify colors in daytime and nighttime, and KSCA was used to derive the color frequency of daytime and nighttime photos and to compare and analyze the two results. The results of classifying the colors of daytime and nighttime photos using machine learning show that, when classifying the colors by 51~100%, the area of daytime colors was approximately 2.45 times greater than that of nighttime colors. The colors of the daytime class were distributed by brightness with white as its center, while that of the nighttime class was distributed with black as its center. Colors that accounted for over 70% of the daytime class were 647, those over 70% of the nighttime class were 252, and the rest (31-69%) were 101. The number of colors in the middle area was low, while other colors were classified relatively clearly into day and night. The resulting color distributions in the daytime and nighttime classes were able to provide the borderline color values of the two classes that are classified by brightness. As a result of analyzing the frequency of digital photos using KSCA, colors around yellow were expressed in generally bright daytime photos, while colors around blue value were expressed in dark night photos. For frequency of daytime photos, colors on the upper 40% had low chroma, almost being achromatic. Also, colors that are close to white and black showed the highest frequency, indicating a large difference in brightness. Meanwhile, for colors with frequency from top 5 to 10, yellow green was expressed darkly, and navy blue was expressed brightly, partially composing a complex harmony. When examining the color band, various colors, brightness, and chroma including light blue, achromatic colors, and warm colors were shown, failing to compose a generally harmonious arrangement of colors. For the frequency of nighttime photos, colors in approximately the upper 50% are dark colors with a brightness value of 2 (Munsell signal). In comparison, the brightness of middle frequency (50-80%) is relatively higher (brightness values of 3-4), and the brightness difference of various colors was large in the lower 20%. Colors that are not cool colors could be found intermittently in the lower 8% of frequency. When examining the color band, there was a general harmonious arrangement of colors centered on navy blue. As the results of conducting the experiment using two methods in this study, machine learning could classify colors into two or more classes, and could evaluate how close an image was with certain colors to a certain class. This method cannot be used if an image cannot be classified into a certain class. The result of such color distribution would serve as a reference when determining how close a certain color is to one of the two classes when the color is used as a dominant color in the base or background color of a certain design. Also, when dividing the analyzed images into several classes, even colors that have not been used in the analyzed image can be determined to find out how close they are to a certain class according to the color distribution properties of each class. Nevertheless, the results cannot be used to find out whether a specific color was used in the class and by how much it was used. To investigate such an issue, frequency analysis was conducted using KSCA. The color frequency could be measured within the range of images used in the experiment. The resulting values of color distribution and frequency from this study would serve as references for color planning of digital design regarding natural scenery in the geographic scope of Korea. Also, the two experiments are meaningful attempts for searching the methods for deriving colors that can be a useful reference among numerous images for content creator users of the relevant field.