• 제목/요약/키워드: Complex injection

검색결과 399건 처리시간 0.029초

전자제어식 직접분사 디젤 엔진 연소실내의 분무연소 특성에 관한 연구 (A study on the spray combustion characteristics in a cylinder of a D.I.diesel engine with the electronically controlled injector)

  • 정재우;김성중;이기형;선우명호
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.50-56
    • /
    • 2000
  • It is well known that the combustion phenomenon of diesel engine is an unsteady turbulent diffusion combustion. Therefore, the combustion performance of diesel engine is related to a complex phenomenon which involves the various factors of combustion, such as a injection pressure, injection timing, injection rate, and operation conditions of engine. In this study, the spray and the flame development processes in a single cylinder D.I. diesel visualization engine which uses the electronically controlled injection system were visualized to interpret the complicated combustion phenomenon by using high speed CCD camera. In addition, the cylinder pressure and heat release rate were also obtained in order to analyze the diesel combustion characteristics under several engine conditions.

  • PDF

사출성형해석을 이용한 수직머시닝센터 ATC 툴 포트의 사출 게이트 위치에 따른 성형성 평가 (Evaluation of Formability Dependent on the Location of Injection Gate of Vertical Machining Center ATC Tool Port Using Injection Molding Analysis)

  • 이여울;박철우;김진록;최현진
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.129-135
    • /
    • 2021
  • Injection molding is a manufacturing method of melting the polymer resin and injecting it into a mold to molding it into the desired form. Due to the short molding time and outstanding formability, complex products can be shaped with high precision and it is the most widely used polymer molding method. However, there may be areas that are not filled depending on the location of the injection gate where polymer resin is injected. Formability is determined by deformation and surface precision due to the impact of residual stress after molding. Hence, choosing the location of the injection gate is very important and molding analysis of injection molding is essential to reduce the cost of the mold. This study evaluated the injection formability based on the location of the injection gate of the vertical machining center ATC tool port using injection molding analysis and the results were compared and analyzed. Injection molding analysis was conducted on filling, packing, and deformation according to the location of the gate of the ATC tool port. From each injection gate location, filling time, pressure, and maximum deformation were compared. At gate 2, conditions of molding time and the location of the gate were far superior in production and quality. Gate 2 produced the smallest deformation of 0.779mm with the best quality.

Numerical analysis of injection molding for filling efficiency on ultrasonic process

  • Lee, Jae-Yeol;Kim, Nak-Soo;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제20권2호
    • /
    • pp.79-88
    • /
    • 2008
  • In this study, we focus on the improvement of the filling efficiency in injection molding by application of ultrasonic vibration. While studies about the filling efficiency of typical filling processes in the injection molding have been widely performed, there have been only few studies about the filling efficiency of an ultrasonic process. The effect of the ultrasonic vibration is an important process condition, which influences the flow characteristics of polymer melt. This new condition even affects well-known injection conditions such as cavity pressure, injection temperature and mold temperature. For this study, we carried out a numerical analysis by appropriate modeling and analysis of the ultrasonic process in the filling process. To verify this numerical analysis, we compared the numerical results with the experimental data. Also, we analyzed the filling process in a thin cavity using this numerical analysis. To understand the flow characteristics of polymer melt in the ultrasonic process, we substituted real and complex vibration conditions with simplified and classified conditions according to the position of vibrating cavity surfaces and the phase difference between two opposing cavity surfaces. We also introduced MFR (melt flow ratio) as a new index to estimate the filling efficiency in the ultrasonic process.

유닛인젝터용 고속응답 솔레노이드 설계 및 응용에 관한 연구 (A Study on Design and Application of High Response Solenoid for Unit Injector)

  • 황재원;양이진;정영식;이상만;채재우
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.43-51
    • /
    • 1998
  • Most of fuel-injection system operated with mechanical methods are difficult to control the injection quantity and injection timing as well as injection rate exactly. Moreover high pressure injection scheme is never be realized with conventional one. On the other hand, serious air pollution can be lessened with injection system equipped with those functions. Therefore, electronically controlled Unit Injuctor(UI) appeared to satify above mentioned desires. However, it is still difficult that the most important part, especially solenoid valve, is analyzed precisely, because of the existence of complex combination of electromagnetics, electrics and dynamic problems. In this study, experimental and theoretical analysis are accomplished for understanding of solenoid valve characteristics and further its design. As the result, the follows are obtained 1) As the increase of wire diameter, the response time became shorter and optimal inductance existed in relative with the response time and wire diameter. 2) According to increasing input voltage, the traction force increased, otherwise the response time was shortened. 3) As the increase of armature stroke, the traction force decreased and the response time became longer.

  • PDF

RCM을 이용한 디젤 분무 거동 및 자발화 특성에 관한 실험적 연구 (An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics to use Rapid Comperssion Machine)

  • 안재현;김형모;신명철;김세원
    • 한국분무공학회지
    • /
    • 제8권3호
    • /
    • pp.33-40
    • /
    • 2003
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community, In order to understand the detailed diesel flame involving the complex physical processes, it is quite desirable to diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation, flame stabilization and pollutant formation, In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes, In terms of the macroscopic spray combustion characteristics, it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle, With increasing the cylinder pressure, there is a tendency that the of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force, Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

RCM을 이용한 디젤 분무거동 및 자발화 특성에 관한 연구 (An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics in the Rapid Compression Machine)

  • 강필중;김형모;김용모;김세원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.447-452
    • /
    • 2000
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community. In order to understand the detailed diesel flame field involving the complex Physical Processes, It Is quite desirable to study diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation flame stabilization and pollutant formation. In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection Pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes. In terms of the macroscopic spray combustion characteristics it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle. With increasing the cylinder pressure there is a tendency that the shape of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force. Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

포움 반응 사출 성형의 수치해석에 관한 연구 (A study on Numerical Simulation of Foam Reaction Injection Molding)

  • Dongjin Seo;Charles L. Tucker;Youn, Jae-Ryoun
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.183-186
    • /
    • 2003
  • Reaction injection molding (RIM) is a widely used process for producing various kinds of complex parts including automobiles, furniture, appliances, and housings. In RIM, products are made from two or more chemical components through mixing, chemical reaction, and molding [1]. Liquid reactants from two supply tanks flow at high pressure into a mix head, where they impinge at high velocity. (omitted)

  • PDF

Isolation and Characterization of Mucinase Complex Secreted from Vibrio parahaemolyticus

  • Jun, In-Joon;Kim, Yoon-Hee;Kim, Min-Jeong;Hwang, Ho-Soon;Lee, Tae-Ho;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권5호
    • /
    • pp.731-737
    • /
    • 2003
  • Mucinase complex from V. parahaemolyticus ATCC 17802 was purified 6-fold with 0.4% yield by two sequential steps of Q-Sepharose and Superdex 200HR column chromatographies. Partially purified mucinase complex showed at least 8 times higher mucin-degrading activity than the culture filtrates. The mucinase complex also showed gelatin-and-casein-hydrolyzing activities, which demonstrates that the protein is a complex compound containing several proteases. The optimum pH and temperature of partially purified mucinase complex for mucin degradation was 8.0 and $35^{\circ}C$, respectively. The partially purified mucinase complex showed high cytotoxic activity on vero cells when examined by MTT assay and microscopic observations. Cytotoxicity was significantly increased in proportion to the concentration of the mucinase complex. Mouse experiments revealed that the jejunum, ileum. and large intestinal tissues were damaged by the injection of the mucinase complex. In particular, the reduction of the goblet cells in the large intestine was remarkable. Collectively, these data suggest that the mucinase complex partially purified from V. parahaemolyticus ATCC 17802 contributes to the adhesion and invasion of V. parahaemolyticus into the host intestinal tract.

배란 전, 후 생쥐 난자-난구 복합체의 미세구조의 변화

  • 김문규;김종흡
    • 한국동물학회지
    • /
    • 제31권4호
    • /
    • pp.273-282
    • /
    • 1988
  • 생쥐에 PMSG와 hOG를 주사한 후 난자-난구복합체의 미세구조의 변화를 환찰함으로세 난구세포의 분산현상을 규명하고자 본 실험을 행하였다. 난자는 PMSG 주사후 48시간까지 별 다른 변화가 없었고 다만 표면막에 miGrOVilli와 Coaled pit의 수가 감소하는 경향을 보였다. 그러나 PMSG-hCG주사 12시간 후에 배란된 난자의 표면은 microvilli와 coated pit가 사라져서 평평하게 되었다. 방사관세포는 PMSG주사 48시간 후메 밀착해 있던 투명대와 간격이 생기기 시작하였고, 투명대를 통관하여 난자의 표면막과 desmosome으로 연결되어 있던 세포질돌기도 퇴화의 징후를 보였다. PMSG-hCG주사 후에는 급속히 격리, 분산되고 세포질돌기는 퇴화하였으며 dermo-some도 사라겼다. 난구세포들은 대조군에서 밀집되어 있었고 거의 gap junction으로 연결되어 있었는데, PMSG주사 24시간 후에는 모양이 등글게 되고 더욱 밀집되었으며, 48시간 후에는 거의 loose junction으로 연결되었고 분산되기 시작하였다. 결국 PMSG-hCG주사 If시간 후에는 완전히 분산되었고 거의 모두 핵응축과 괴사현상을 보였다. 난자- 난구 복합체의 분산은 배란전에 PMSG에 의하여 시작되고 hCG에 의하여 촉진 완결된다는 것이 확실하다. The ultrastructural changes of the oocyte-cumulus complexes of mouse alter injection of PMSG and hOG have been investigated in order to elucidate expansion phenomenon of the cumulus cells. The oocytes until 48 hours after PMSC injection showed no change except a tendency of decrease in numbers of microvilli and the coated pelts on surface membrane. However, surface membrane of the ovulated oocytes 12 hours after PMSC-hCC injection changed to be smooth due to disapperance of microvilli and coated pits. Corona radiate cells tightly attaching to zona pe]lucida 48 hours after PMSC injection began to be detached and their cytoplasmic processes connected by desmosome to oocyte surface membrane showed a degeneration symptom. Thereafter the detachment and degeneration were accelerated by hCG injection and followed by disappearence of desmosome. The cumulus cells in control group were compacted and connected by almost 9aP junction each another. Ite cumulus cells 24 hours after PMSG injection were changed to be round form and more tightly compacted. However, the cumulus cells 48 hours after PMSG injection were connected by almost loose junction and showed the beginning of expansion. Eventuallv, the cumulus cells 12 hours a%or PMSG-hCG injection were completely expanded, and became pvknotic and necrotic in most It is clear that the expansion of oocyte-cumulus complex were initiated by PMSC, then accelerated and completed by hCG before ovulation.

  • PDF

Geomechanical and thermal reservoir simulation during steam flooding

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.505-513
    • /
    • 2018
  • Steam flooding is widely used in heavy oil reservoir with coupling effects among the formation temperature change, fluid flow and solid deformation. The effective stress, porosity and permeability in this process can be affected by the multi-physical coupling of thermal, hydraulic and mechanical processes (THM), resulting in a complex interaction of geomechanical effects and multiphase flow in the porous media. Quantification of the state of deformation and stress in the reservoir is therefore essential for the correct prediction of reservoir efficiency and productivity. This paper presents a coupled fluid flow, thermal and geomechanical model employing a program (MATLAB interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators for coupled THM processes in multiphase reservoir modeling. In each simulation cycle, time dependent reservoir pressure and temperature fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, the proposed approach is illustrated on a complex coupled problem related to steam flooding in an oil reservoir. The reservoir coupled study showed that permeability and porosity increase during the injection scenario and increasing rate around injection wells exceed those of other similar comparable cases. Also, during injection, the uplift occurred very fast just above the injection wells resulting in plastic deformation.