• Title/Summary/Keyword: Complex energy saving device

Search Result 5, Processing Time 0.02 seconds

Development of Complex Energy Saving Device

  • Lee, Kwi-Joo;An, Jung-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.1-5
    • /
    • 2012
  • A complex energy saving device has been developed for middle class vessels. The propulsive performance of the developed device is described through a model test. The pre-swirl stator, which recovers the rotational energy of the propeller slipstream, is a well-known energy saving device for large vessels. The pre-swirl stator for a large vessel is usually cast as a part of the stern frame and has a high cost. The manufacture of a cast stator for an existing vessel is almost impossible. The complex device that was developed can be fitted on astern frame by welding. The model tests show a 4-6% efficiency gain for middle class vessels with the developed appendages compared to those with bare hulls.

A Study on the Application Plan of Air-Conditioning and Renewable Complex Systems in the Small Schools. (소규모 학교의 냉난방 및 신재생에너지복합시스템 적용방안에 관한 연구)

  • Kim, Ji-Yeon;Park, Hyo-Soon;Hong, Sung-Hee;Kim, Seong-Sil;Hur, Inn-Ku;Suh, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.946-951
    • /
    • 2009
  • The research aims to study a new, optimum and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and water heating energy saving efficiencies for educational facilities. Therefore, this research carried out a study on the new/renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 174kW + solar heat collector $94\;m^2$ + highly efficient electronic cooling/heating device (EHP) 249.4kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 255.2kW + highly efficient electronic cooling/heating device (EHP) 168.2kW.

  • PDF

A Study on Implementation of FEMS for Chemical Industry Complex (화학 산업단지 FEMS 구축 연구)

  • Soo-Min Yoo;Soo-Woong Back;Jung-Min Lim;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.277-284
    • /
    • 2023
  • It is not easy to implement an energy management system in an industrial complex where small businesses are scattered, so the method of collecting and adjusting energy-related data is mainly used. FEMS is a system that responds to the demand for a paradigm shift from a passive energy management method to an active energy management method using IoT and ICT. In this study, a factory energy management system(FEMS) is designed for small and medium-sized enterprises located in chemical industrial complexes. Efficiency was confirmed by reviewing energy saving measures and efficiencies through FEMS for the electric energy of facilities built in each company. The cost effectiveness of FEMS is created when it is utilized by responsible and empowered personnel within the business processes of the host company. Therefore, it is necessary to utilize EMS that can be applied to the planning, support, operation and evaluation, and continuous improvement of the energy management system to achieve corporate organization and energy management goals.

Development of Real Time Data Acquisition Unit for a projectile Using RF (RF를 이용한 발사체를 위한 실시간 데이터 취득 장치 구현)

  • Hong, Il-Hee;Lee, Seung-Min;Kim, Yang-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • This paper proposes a new approach to provide RF communication channel and electric power transmission to overcome the weakness of conventional tests, which may cause several problems. When an RF communication device is used to communicate between launch vehicle and launch complex in stead of using harness umbilical, it may draw the simplicity of ground test equipments, cost-saving, and the reduction of test time. In addition, if an RF power transmission device is adopted to supply on-board power of launch vehicle, it can replace expensive on-board batteries, which may be degraded easily by the repeated charging and discharging processes.

Investigation of Applying Technical Measures for Improving Energy Efficiency Design Index (EEDI) for KCS and KVLCC2

  • Jun-Yup Park;Jong-Yeon Jung;Yu-Taek Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.58-67
    • /
    • 2023
  • While extensive research is being conducted to reduce greenhouse gases in industrial fields, the International Maritime Organization (IMO) has implemented regulations to actively reduce CO2 emissions from ships, such as energy efficiency design index (EEDI), energy efficiency existing ship index (EEXI), energy efficiency operational indicator (EEOI), and carbon intensity indicator (CII). These regulations play an important role for the design and operation of ships. However, the calculation of the index and indicator might be complex depending on the types and size of the ship. Here, to calculate the EEDI of two target vessels, first, the ships were set as Deadweight (DWT) 50K container and 300K very large crude-oil carrier (VLCC) considering the type and size of those ships along with the engine types and power. Equations and parameters from the marine pollution treaty (MARPOL) Annex VI, IMO marine environment protection committee (MEPC) resolution were used to estimate the EEDI and their changes. Technical measures were subsequently applied to satisfy the IMO regulations, such as reducing speed, energy saving devices (ESD), and onboard CO2 capture system. Process simulation model using Aspen Plus v10 was developed for the onboard CO2 capture system. The obtained results suggested that the fuel change from Marine diesel oil (MDO) to liquefied natural gas (LNG) was the most effective way to reduce EEDI, considering the limited supply of the alternative clean fuels. Decreasing ship speed was the next effective option to meet the regulation until Phase 4. In case of container, the attained EEDI while converting fuel from Diesel oil (DO) to LNG was reduced by 27.35%. With speed reduction, the EEDI was improved by 21.76% of the EEDI based on DO. Pertaining to VLCC, 27.31% and 22.10% improvements were observed, which were comparable to those for the container. However, for both vessels, additional measure is required to meet Phase 5, demanding the reduction of 70%. Therefore, onboard CO2 capture system was designed for both KCS (Korea Research Institute of Ships & Ocean Engineering (KRISO) container ship) and KVLCC2 (KRISO VLCC) to meet the Phase 5 standard in the process simulation. The absorber column was designed with a diameter of 1.2-3.5 m and height of 11.3 m. The stripper column was 0.6-1.5 m in diameter and 8.8-9.6 m in height. The obtained results suggested that a combination of ESD, speed reduction, and fuel change was effective for reducing the EEDI; and onboard CO2 capture system may be required for Phase 5.