• 제목/요약/키워드: Complex amine

검색결과 117건 처리시간 0.024초

A Novel Iron(III) Complex with a Tridentate Ligand as a Functional Model for Catechol Dioxygenases: Properties and Reactivity of [Fe(BBA)DBC]$ClO_4$

  • 윤성호;이호진;이강봉
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권9호
    • /
    • pp.923-928
    • /
    • 2000
  • [FeIII(BBA)DBC]ClO4 as a new functional model for catechol dioxygenases has been synthesized, where BBA is a bis(benzimidazolyl-2-methyl)amine and DBC is a 3,5-di-tert-butylcatecholate dianion.The BBA complex has a structuralfeature that iron cent er has a five-coordinate geometry similar to that of catechol dioxygenase-substrate complex.The BBA complex exhibits strong absorptionbands at 560 and 820 nm in CH3CN which are assigned to catecholate to Fe(III) charge transfer transitions. It also exhibits EPR signals at g = 9.3 and 4.3 which are typical values for the high-spin FeIII (S = 5/2) complex with rhombicsymmetry. Interestingly, the BBA complex reacts with O2 within an hour to afford intradiol cleavage (35%) and extradiol cleavage (60%) products. Surprisingly, a green color intermediate is observed during the oxygenation process of the BBA com-plex in CH3CN. This green intermediate shows a broad isotropic EPR signal at g = 2.0. Based on the variable temperature EPR study, this isotropic signalmight be originated from the [Fe(III)-peroxo-catecholate] species havinglow-spin FeIII center, not from the simple organic radical. Consequently,it allows O2 to bind to iron cen-ter forming the Fe(III)-superoxide species that converts to the Fe(III)-peroxide intermediate. These present data can lead us tosuggest that the oxygen activation mechanism take place for the oxidative cleavingcatechols of the five-coordinate model systems for catechol dioxygenases.

A New Functional Model Complex of Extradiol-cleaving Catechol Dioxygenases: Properties and Reactivity of [$Fe^{II}$(BLPA)DBCH]BPh₄

  • Lim, Ji H.;Park, Tae H.;이호진;이강봉;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권12호
    • /
    • pp.1428-1432
    • /
    • 1999
  • [Fe$^{II}$(BLPA)DBCH]BPh₄ (1), a new functional model for the extradiol-cleaving catechol dioxygenases, has been synthesized, where BLPA is bis(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine and DBCH is 3,5-di-tert-butylcatecholate monoanion. ¹H NMR and EPR studies confirm that 1 has a high-spin Fe(II) (S = 2) center. The electronic spectrum of 1 exhibits one absorption band at 386 nm, showing the yellow color of the typical [Fe$^{II}$(BLPA)] complex. Upon exposure to O₂, 1 is converted to an intense blue species within a minute. This blue species exhibits two intense bands at 586 and 960 nm and EPR signals at g = 5.5 and 8.0 corresponding to the high-spin Fe(III) complex (S = 5/2, E/D = 0.11). This blue complex further reacts with O₂ to be converted to (μ-oxo)Fe$^{III}_2$ complex within a few hours. Interestingly, 1 affords intradiol cleavage (65%) and extradiol cleavage (20%) products after the oxygenation. It can be suggested that 1 undergoes two different oxygenation pathways. The one takes the substrate activation mechanism proposed for the intradiol cleavage products after the oxidation of the $Fe^II\;to\;Fe^{III}$. The other involves the direct attack of O₂ to $Fe^{II}$ center, forming the $Fe^{III}$-superoxo intermediate which can give rise to the extradiol cleavage products. 1 is the first functional Fe(II) complex for extradiol-cleaving dioxygenases giving extradiol cleavage products.

임상가를 위한 특집 2 - 심미수복용 레진 (Tooth-colored Restorative Resin Composites)

  • 권태엽
    • 대한치과의사협회지
    • /
    • 제51권1호
    • /
    • pp.12-17
    • /
    • 2013
  • Curing methods for denial resin-based materials are limited because of the need to polymerize quickly in the oral cavity at an ambient temperature. At present, most dental restorative composites use a camphorquinone-amine complex initiation, visible light-cure, one-component systems. Clinically, it is important to try to optimize the degree of conversion of res in composites using proper manipulation and adequate light-curing techniques to ensure the best outcome.

수용액 중에서 Ni(II) 이온과 2-(2-Hydroxyethylamino)-2-(hydroxymethyl)-1,3-propanediol(Monotris)과의 착물형성에 대한 연구 (A Study on the Complexation of Nickel(II) Ion with 2-(2-Hydroxyethylamino)-2-(hydroxymethyl)-1,3-propanediol(Monotris) in Aqueous Solution)

  • 홍경희;심승보;오성근;전용진
    • 한국산학기술학회논문지
    • /
    • 제11권12호
    • /
    • pp.5221-5231
    • /
    • 2010
  • Ni(II)이온과 2-(2-Hydroxyethylamino)-2-(hydroxymethyl)-1,3-propanediol(Monotris)과의 착물형성을 $25^{\circ}C$ 이온강도 0.10M 에서 전위차법으로 연구하였다. $NiL^{2+}$ 착물은 히드록실기의 산소 원자 뿐만아니라 아민의 질소기도 금속에 배위하였다. pH가 증가하면서 $NiL^{2=}$는 3개의 수소이온이 해리된 $Ni_2L_2H_{-3}^+$의 이핵착물이 형성되었다.

Coordination of an Amino Alcohol Schiff Base Ligand Toward Cd(II)

  • Mardani, Zahra;Hakimi, Mohammad;Moeini, Keyvan;Mohr, Fabian
    • 대한화학회지
    • /
    • 제63권1호
    • /
    • pp.29-36
    • /
    • 2019
  • A potentially tetradentate Schiff base ligand, 2-((2-((pyridin-2-ylmethylene)amino)ethyl)amino)ethan-1-ol (PMAE), and its cadmium(II) complex, [$Cd(PMAE)I_2$] (1), were prepared and characterized by elemental analysis, FT-IR, Raman, $^1H$ and $^{13}C$ NMR spectroscopies and single-crystal X-ray diffraction. In the crystal structure of 1, the cadmium atom has a slightly distorted square-pyramidal geometry and a $CdN_3I_2$ environment in which the PMAE acts as an $N_3$-donor. In the crystal packing of the complex, the alcohol and amine groups of the coordinated ligands participate in hydrogen bonding with iodide ions and form $R^2{_2}(14)$ and $R^2{_2}(8)$ hydrogen bond motifs, respectively. In addition to the hydrogen bonds, the crystal network is stabilized by ${\pi}-{\pi}$ stacking interactions between pyridine rings. The thermodynamic stability of the isolated ligand and its cadmium complex along with their charge distribution patterns were studied by DFT and NBO analysis.

세자리 폴리아민리간드의 합성과 양성자 해리상수 및 전이금속과의 착물 안정도상수의 결정 (Synthesis of Tridentate Poly-amine Ligands and Determination of Stability Constants of Transition Metal Complexes)

  • 김선덕;김준광;고문수
    • 분석과학
    • /
    • 제15권2호
    • /
    • pp.135-141
    • /
    • 2002
  • 새로운 세자리 폴리아민 리간드 N,N-Bis(2-amino-ethyl)-methylamine${\cdot}$2HBr(BAMA${\cdot}$2HBr), N,N-Bis(2-amino-ethyl)-ethylamine${\cdot}$2HBr (BAEA${\cdot}$2HBr), N,N-Bis-(2-amino-ethyl)-propylamine${\cdot}$2HBr (BAPA${\cdot}$2HBr), N,N-Bis(2-amino-ethyl)-butylamine${\cdot}$2HBr (BABA${\cdot}$2HBr)을 두 개의 브롬산염으로 합성하여 원소분석, 적외선 분광법, 핵자기공명법 및 질량스펙트럼으로 합성을 확인하였다. 리간드들의 양성자 해리상수와 전이금속(II) 착물의 안정도상수를 수용액에서 전위차 적정법으로 측정하여 diethylenetriamine의 값과 비교하였다. 리간드별 전이금속(II)과 안정도상수의 크기는 BAMA < BAEA < BAPA > BABA순으로 증가하였다. BAPA가 BABA보다 안정도상수가 큰 이유는 BABA 내 부피가 큰 butyl 기에 의해 분자내의 입체장애를 증가시킨 것이다.

d10 Metal Complexes of a Tripodal Amine Ligand

  • Choi, Kyu-Seong;Kang, Dong-hyun;Lee, Ji-Eun;Seo, Joo-beom;Lee, Shim-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권5호
    • /
    • pp.747-750
    • /
    • 2006
  • Research on tripodal complexes has grown in recent decades and has been subject of numerous reports.1-11 The reasons for this interest include their relevance to model functions of metalloenzymes1-3 and their potential applications in catalysis.13-17 The ligand system used most in this category has been tren, the tripodal tetraamine N(CH2CH2NH2)3, and its derivatives.4 The bz3tren is a versatile tetradentate ligand, known to form stable complexes not only with transition metals5-11 including Cu2+, Zn2+ and Co2+ but also anion species.12 However, only few results on the d10 metal complexes with bz3tren have been reported by us10 and others.6,7 As a part of on going efforts, we therefore focus our attention to extend other d10 system that includes heavy metal ions.

Anion Effects on the Aminolysis of Carboxyl-Containing Esters by Triamines in Dimethyl Sulfoxide

  • 서정훈;김용호;장재희
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권1호
    • /
    • pp.72-74
    • /
    • 1989
  • Aminolysis of various carboxyl-containing ester substrates by triamines was kinetically studied in dimethyl sulfoxide (DMSO) in the presence of p-toluenesulfonic acid (TSA) or in the presence of sulfuric acid and potassium iodide (KI). In the presence of TSA or KI, the pseudo-first-order rate constants ($k_o$) were proportional to the total amine concentration ($N_o$). This stands in marked contrast with the corresponding reactions carried out with sulfuric acid added as the sole additive, in which saturation kinetic behavior of ko with respect to No was manifested. This indicates that complex formation between the ester substrate and the amine is greatly suppressed by the addition of TSA or KI. The second-order rate constants obtained in the presence of TSA or KI were substantially greater than those measured in the absence of any additive. These kinetic features were explained in terms of tight interaction between the protonated amines with I- or TSA-. Thus, the results were related to the hydrogen bonding that involves DMSO, bisulfate ion, I-, TSA-, and the protonated forms of triamines.

Bakelite A-Ni(II) 착물의 질산이온 선택성 막전극 (Nitrate Ion-Selective Membrane Electrode Based on Complex of Ammonia Modified Bakelite A-Ni(II) Nitrate)

  • 김환기;신두순
    • 대한화학회지
    • /
    • 제31권3호
    • /
    • pp.271-279
    • /
    • 1987
  • Amine기를 가진 Bakelite A와 Ni(II) 사이의 착물을 이용한 ${NO_3}^-$이온 선택성 막전극을 만들었다. 이 막전극은 $H^+$ 이온 및 2가 3가 음이온에는 감응하지 않으며, 특히 이 막전극의 재현성, 감응시간 및 이온선택성등 전기화학적 성질을 조사하여 다른 실용화된 막전극과 비교 고찰하였으며 분석화학에의 응용을 고찰하였다.

  • PDF