• Title/Summary/Keyword: Complex Potential

Search Result 1,701, Processing Time 0.028 seconds

Electro-oxidation of Cyclohexanol on a Copper Electrode Modified by Copper-dimethylglyoxime Complex Formed by Electrochemical Synthesis

  • Hasanzadeh, Mohammad.;Shadjou, Nasrin.;Saghatforoush, Lotfali.;Khalilzadeh, Balal.;Kazeman, Isa.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2943-2948
    • /
    • 2009
  • Copper-dimethylglyoxime complex (CuDMG) modified Copper electrode (Cu/CuDMG) showed a catalytic activity towards cyclohexanol oxidation in NaOH solution. The modified electrode prepared by the dimethylglyoxime anodic deposition on Cu electrode in the solution contained 0.20 M $NH_4Cl\;+\;NH_4OH\;(pH\;9.50)\;and\;1\;{\times}\;10^{-4}$ M dimethylglyoxime. The modified electrode conditioned by potential recycling in a potential range of -900${\sim}$900 mV vs. Ag/AgCl by cyclic voltammetry in alkaline medium (1 M NaOH). The results show that the CuDMG film on the electrode behaves as an efficient catalyst for the electro-oxidation of cyclohexanol in alkaline medium via Cu (III) species formed on the electrode.

Electrocatalytic Reduction of Molecular Oxygen at Poly(1,8-diaminonaphthalene) and Poly(Co(II)-(1,8-diaminonaphthalene)) Coated Electrodes

  • Park, Hyun;Kwon, Tae-guen;Park, Deog-Su;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1763-1768
    • /
    • 2006
  • The application of poly(Co(II)-(1,8-diaminonaphthalene))(poly(Co-DAN)) and poly(1,8-diaminonaphthalene) (Poly(1,8-DAN)) to the electrocatalytic reduction of molecular oxygen was investigated, which were electrochemically grown by the potential cycling method on the glassy carbon electrodes. The reduction of oxygen at the polymer and its metal complex polymer coated electrodes were irreversible and diffusion controlled. The Poly(1,8-DAN) and Poly(Co-DAN) films revealed the potential shifts for the oxygen reduction to 30 mV and 110 mV, respectively, in an aqueous solution, compared with that of the bare electrode. Hydrodynamic voltammetry with a rotating ring-disk electrode showed that Poly(1,8-DAN) and Poly(Co-DAN) coated electrodes converted respectively 84% and 22% of $O_2$ to $H_2O$ via a four electron reduction pathway.

Plant Cell Wall Polysaccharides as Potential Resources for the Development of Novel Prebiotics

  • Yoo, Hye-Dong;Kim, Do-Jung;Paek, Seung-Ho;Oh, Seung-Eun
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.371-379
    • /
    • 2012
  • Prebiotic oligosaccharides, with a degree of polymerization (DP) of mostly less than 10, exhibit diverse biological activities that contribute to human health. Currently available prebiotics are mostly derived from disaccharides and simple polysaccharides found in plants. Subtle differences in the structures of oligosaccharides can cause significant differences in their prebiotic properties. Therefore, alternative substances supplying polysaccharides that have more diverse and complex structures are necessary for the development of novel oligosaccharides that have actions not present in existing prebiotics. In this review, we show that structural polysaccharides found in plant cell walls, such as xylans and pectins, are particularly potential resources supplying broadly diverse polysaccharides to produce new prebiotics.

Electrochemical Studies of Oxovanadium(IV) Complex of 2-Amino-1-cyclopentene-1-dithiocarboxylate

  • Young-Jin Kim;Duck-Soo Park;Yoon-Bo Shim;Sung-Nak Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.89-94
    • /
    • 1990
  • The redox properties of 2-amino-1-cyclopentene-1-dithiocarboxylate anion (acdc) and its oxovanadium complex, $VO(acdc)_2$ have been investigated in dimethylformamide (DMF) with polarography and cyclic voltammetry. Bis(2-amino-1-cyclopentene-1-dithiocarboxylate) oxovanadium(IV) exhibits two polarographic oxidation waves and two reduction waves in the potential range from +0.50V to - 2.4V vs. the Ag/AgCl (DMF) reference electrode. The second oxidation wave appeared at - 0.08V is found to be reversible and is attributed to the formation of $VO(acdc)_2\;^+$. The first reduction process (at - 0.60V) is also reversible and this reduction process is caused by the electrode process of formation of $VO(acdc)_2$-species. The half wave potential for the reduction, V(IV)$\to$V(III) is more positive for oxovanadium complexes containing sulfur donor atoms than other VO(IV) complexes having oxygen or nitrogen donor atoms.

The complex role of extracellular vesicles in HIV infection

  • Jung-Hyun Lee
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.335-340
    • /
    • 2023
  • During normal physiological and abnormal pathophysiological conditions, all cells release membrane vesicles, termed extracellular vesicles (EVs). Growing evidence has revealed that EVs act as important messengers in intercellular communication. EVs play emerging roles in cellular responses and the modulation of immune responses during virus infection. EVs contribute to triggering antiviral responses to restrict virus infection and replication. Conversely, the role of EVs in the facilitation of virus spread and pathogenesis has been widely documented. Depending on the cell of origin, EVs carry effector functions from one cell to the other by horizontal transfer of their bioactive cargoes, including DNA, RNA, proteins, lipids, and metabolites. The diverse constituents of EVs can reflect the altered states of cells or tissues during virus infection, thereby offering a diagnostic readout. The exchanges of cellular and/or viral components by EVs can inform the therapeutic potential of EVs for infectious diseases. This review discusses recent advances of EVs to explore the complex roles of EVs during virus infection and their therapeutic potential, focusing on HIV-1.

Human Health Risk Assessment of BTEX from Daesan Petrochemical Industrial Complex (대산 석유화학 산업단지 인근 지역에서의 BTEX 인체 위해성 평가)

  • Lee, Jihyeong;Jang, Yong-Chul;Cheon, Kwangsoo;Kim, Bora
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.5
    • /
    • pp.321-333
    • /
    • 2022
  • In this study, the concentration and distribution characteristics of BTEX (benzene toluene, ethylbenzene, and xylene) emitted from Daesan Petrochemical Industrial Complex were examined to determine their potential hazards to local residents. Residents living nearby the complex areas may be exposed to the chemicals through various media (air, water, and soil), especially by air. This study evaluated human health risks by inhalation using both deterministic and probabilistic risk assessment approaches. As a result of the deterministic risk assessment, the non-cancer risk was much lower than the regulation limit of hazard index (HI 1.0) for all the points. However, in case of cancer risk evaluation, it was found that the risk of excess cancer for benzene at point A located in the industrial complex was 2.28×10-6, which slightly exceeded the standard regulatory limit of 1.0×10-6. In addition, the probabilistic risk assessment revealed that the percentile exceeding the standard of 1.0×10-6was found to be 45.3%. The sensitivity analysis showed that exposure time (ET) had the greatest impact on the results. Based on the risk assessment study, it implied that ethylbenzene, toluene, and xylene had little adverse effects on potential human exposure, but benzene often exceeded the cancer risk standard (1.0×10-6). Further studies on extensive VOCs monitoring are needed to evaluate the potential risks of industrial complex areas.

Electrochemical Behavior of Mordant Red 19 and its Complexes with Light Lanthanides

  • Sang Kwon Lee;Taek Dong Chung;Song-Ju Lee;Ki-Hyung Chjo;Young Gu Ha;Ki-Won Cha;Hasuck Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.567-574
    • /
    • 1993
  • Mordant Red 19(MR19) is reduced at mercury electrode at -0.67 V vs. Ag/AgCl with two electrons per molecule in pH 9.2 buffer by differential pulse polarography and linear sweep voltammetry. The peak potential is dependent on the pH of solution. The exhaustive electrolysis, however, gives 4 electrons per molecule because of the disproportionation of the unstable hydrazo intermediate. The electrochemical reduction of lanthanide-MR19 complexes is observed at more cathodic potential than that of free ligand. The difference in peak potentials between complex and free ligand varies from 75 mV for $La^{3+}$ to 165 mV for $Tb^{3+}$ and increases with increasing the atomic number of lanthanide. The electrochemical reduction of lanthanide complexes with MR19 is due to the reduction of ligand itself, and it can be potentially useful as an indirect method for the determination of lanthanides. The shape of i-E curves and the scan rate dependence indicates the presence of adsorption and the adsorption was confirmed by potential double-step chronocoulometry and the effect of standing time. Also the surface excess of the adsorbed species and diffusion coefficients are determined. The composition of the complex is determined to be 1 : 2 by spectrophotometric and electrochemical methods.

A Newly Developed Non-Cyanide Electroless Gold Plating Method Using Thiomalic Acid as a Complexing Agent and 2-Aminoethanethiol as a Reducing Agent

  • Han, Jae-Ho;Lee, Jae-Bong;Van Phuong, Nguyen;Kim, Dong-Hyun
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.89-99
    • /
    • 2022
  • A versatile method for performing non-cyanide electroless gold plating using thiomalic acid (TMA) as a complexing agent and 2-aminoethanethiol (AET) as a reducing agent was investigated. It was found that TMA was an excellent complexing agent for gold. It can be used in electroless gold plating baths at a neutral pH with a high solution stability, makes it a potential candidate to replace conventional toxic cyanide complex. It was found that one gold atomic ion could bind to two TMA molecules to form the [2TMA-Au+] complex in a solution. AET can be used as a reducing agent in electroless gold plating solutions. The highest current density was obtained at electrode rotation rate of 250 to 500 rpm based on anodic and cathodic polarization curves with the mixed potential theory. Increasing AET concentration, pH, and temperature significantly increased the anodic polarization current density and shifted the plating potential toward a more negative value. The optimal gold ion concentration to obtain the highest current density was 0.01 M. The cathodic current was higher at a lower pH and a higher temperature. The current density was inversely proportional to TMA concentration.

Synthesis and Characterization of Mononuclear Octahedral Fe(III) Complex Containing a Biomimetic Tripodal Ligand, N-(Benzimidazol-2-ylmethyl)iminodiacetic Acid

  • Moon, Do-Hyun;Kim, Jung-hyun;Lah, Myoung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1597-1600
    • /
    • 2006
  • The mononuclear iron complex 1, $Fe^{III}$(Hbida)Cl($H_2O$), was synthesized using a tripodal tetradentate ligand, N-(benzimidazol-2-ylmethyl)iminodiacetic acid (H3bida), which has two carboxylate groups, one benzimida- zoyl group, and one tertiary amine where it serves as a tetradentate chelating ligand for the octahedral Fe(III) ion. The four equatorial positions of the octahedral complex are occupied by two monodentate carboxylates, a benzimidazole nitrogen, and an oxygen of a water molecule. One of the axial positions is occupied by an apical nitrogen of the Hbida and the other by a chloride anion. The mononuclear octahedral complex 1 mimics the geometry of the key intermediate structure of the catalytic reaction cycle proposed for the FeSODs, which is a distorted octahedral geometry with three histidyl imidazoles, an aspartyl carboxylate, a superoxide anion, and a water molecule. The redox potential of complex 1, $E_{1/2}$ is -0.11V vs. Ag/AgCl (0.12 V vs. NHE), which is slightly lower than those reported for the most FeSODs. The magnetic susceptibility of complex 1 at room temperature is 5.83 $\mu$B which is close to that of the spin only value, 5.92 $\mu$B of high-spin d5 Fe(III).

Streaming potential and groundwater contamination

  • Baker Simon S.;Cull James P.
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.41-44
    • /
    • 2004
  • Measurements of streaming potential can provide a means for the detection and quantification of contaminants in groundwater prior to remediation. However, laboratory determinations of specific electrolyte properties are required for an adequate analysis of the hydraulic gradient in complex situations. Data obtained for the King River in Tasmania confirm a linear relationship linking streaming potential data and hydraulic gradients. Laboratory samples at low concentration (0.001M KCl) indicate values in the range 20-80 mV/cm of water pressure, while for higher concentrations (0.01M KCl) values are less than 25 mV/cm. Similar ion concentrations are observed in the King River, consistent with field correlations indicating values for streaming potential close to 15 mV/cm. In-situ fluid samples are required for more detailed analysis of local anomalies that may be associated with variations in recharge and migration of contaminants.