• 제목/요약/키워드: Complex Number

검색결과 67건 처리시간 0.134초

복소수의 기하적 해석의 발달 : Descarte, Wallis, Wessel를 중심으로 (Evolution of Geometric Interpretation of Complex Number : Focused on Descarte, Wallis, Wessel)

  • 이동환
    • 한국수학사학회지
    • /
    • 제20권3호
    • /
    • pp.59-72
    • /
    • 2007
  • 복소수 발견초기 수학자들은 복소수에 대한 거부감이 상당했으나 복소수의 대수적 연산에는 큰 어려움이 없었다. 복소수가 수학적 대상으로 인정받기까지 많은 시간이 필요했던 이유는 복소수의 기하적 해석에 많은 시행착오와 시간이 필요했기 때문이다. 본 논문은 복소수의 기하적 해석의 싹을 Euclid 원론에서 찾고, Descarte, Wallis, Wessel를 거치면서 그 싹이 틔어가는 과정을 밝히고 있다. 복소수의 기하적 해석에 대한 세 명의 수학자들의 생각은 서로 다르지만 밀접한 관계가 있다. 이들은 선분과 복소수의 관계에 주목하고, 곱셈 연산을 일반화하면서 복소수의 기하적 해석을 시도하였다.

  • PDF

On Teaching Materials by Using the Rotations about the Origin and the Reflections in Lines through the Origin

  • Tanaka Masaki;Yamaguti Kiyosi
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제9권3호
    • /
    • pp.257-267
    • /
    • 2005
  • When notions of numbers are expanded from natural number to complex number, a similar mathematical phenomenon can be observed in each number. As a case study, to complex number, the phenomenon is investigated carefully and teaching materials are created. Then complex number is expressed with matrices and is geometrically treated, so a new number which is an extension of complex number is discovered. Thus, teaching material regarding to complex number and matrices is made for students of ordinary level. Moreover, for talented students, material about an extension of complex number can be added to the previous one.

  • PDF

ATD에 근거한 유리수의 대수학적 completion에 관한 연구 (The algebraic completion of the rational numbers based on ATD)

  • 김부윤;정경미
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제50권2호
    • /
    • pp.135-148
    • /
    • 2011
  • We can say that the history of mathematics is the history on the development of the number system. The number starts from Natural number and is constructed to Integer number and Rational number. The Rational number is not the complete number analytically so that Real number is completed by the idea of the nested interval method. Real number is completed analytically, however, is not by algebra, so the algebraically completed type of the rational number, through the way that similar to the process of completing real number, is Complex number. The purpose of this study is to show the most appropriate way for the development of the human being thinking about the teaching and leaning of Complex number. To do this, We have to consider the proof of the existence of Complex number, the background of the introduction of Complex number and the background knowledge that the teachers to teach Complex number should have. Also, this study analyzes the knowledge to be taught of Complex number based on the anthropological theory of didactics and finally presents the teaching method of Complex number based on this theory.

교과서에 표현된 복소수와 이에 대한 학생들의 이해 실태 분석 (Complex number on textbooks and Analysis on understanding state of students)

  • 박선호;표성수
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제51권1호
    • /
    • pp.1-19
    • /
    • 2012
  • In this study, contents of 'the 2007 revised curriculum handbook' and 16 kinds of mathematics textbooks were analyzed first. The purpose of this study is to examine the understanding state of students at general high schools by making questionnaires to survey the understanding state on contents of chapter of complex number based on above analysis. Results of research can be summarized as follows. First, the content of chapter of complex number in textbook was not logically organized. In the introduction of imaginary number unit, two kinds of marks were presented without any reason and it has led to two kinds of notation of negative square root. There was no explanation of difference between delimiter symbol and operator symbol at all. The concepts were presented as definition without logical explanations. Second, students who learned with textbook in which problems were pointed out above did not have concept of complex number for granted, and recognized it as expansion of operation of set of real numbers. It meant that they were confused of operation of complex numbers and did not form the image about number system itself of complex number. Implications from this study can be obtained as follows. First, as we came over to the 7th curriculum, the contents of chapter of complex number were too abbreviated to have the logical configuration of chapter in order to remove the burden for learning. Therefore, the quantitative expansion and logical configuration fit to the level for high school students corresponding to the formal operating stage are required for correct configuration of contents of chapter. Second, teachers realize the importance of chapter of complex number and reconstruct the contents of chapter to let students think conceptually and logically.

복소수 입사각을 이용한 평판 광도파로 해석 (Analysis of planar optical waveguides using incident angle of complex number)

  • 임영준;김창민
    • 전자공학회논문지A
    • /
    • 제33A권5호
    • /
    • pp.149-154
    • /
    • 1996
  • We propose the concept of incident angle of complex number and analyze planar optical waveguides by applying the concept. The incident angle of complex number is concerned with the modeling of prism-gap-waveguide structures. It is shown that, when optical waveguides are analyzed by use of the transfer matrix method, the proposed concept enable us to find solutions faster and more accurately than ghatak's method which introduces the leaky structure.

  • PDF

Radix-4 Booth Recoding과 RB 연산을 이용한 새로운 복소수 승산 알고리듬 및 10-bit CMAC코어 설계 (A New Complex-Number Multiplication Algorithm using Radix-4 Booth Recoding and RB Arithmetic, and a 10-bit CMAC Core Design)

  • 김호하;신경욱
    • 전자공학회논문지C
    • /
    • 제35C권9호
    • /
    • pp.11-20
    • /
    • 1998
  • 고속 복소수 연산장치는 채널등화, 동기신호 복원, 변조 및 복조 등 디지탈 통신 시스템의 기저대역 신호처리에 필수적인 기능블록이다. 본 논문에서는 redundant binary (RB) 연산과 radix-4 Booth recoding을 결합한 새로운 복소수 승산 알고리듬을 제안한다. 제안되는 복소수 승산 방법은 실수 승산기를 사용하는 기존의 방법과 비교하여 부분곱의 수를 반으로 감소시키며, 단순화된 병렬구조로 구현되므로 고속 동작 및 저전력 소모를 가능하게 한다. 제안된 알고리듬을 적용하여 10-bit operand를 갖는 prototype 복소수 승산-누적기(complex-number multiplier-accumulator ; CMAC) 코어를 0.8-㎛ N-Well CMOS 공정으로 설계, 제작하였다. 제작된 CMAC 칩은 18,000여개의 트랜지스터로 구성되며, 코어부분의 면적은 약 1.60 × 1.93 ㎟이다. 제작된 칩을 테스트 보드에 실장하여 특성을 평가한 결과, 전원전압 V/sub DD/=3.3-V에서 120-MHz의 속도로 동작함을 확인하였으며, 이때의 전력소모는 약 63-mW로 측정되었다.

  • PDF

LEVEL-m SCALED CIRCULANT FACTOR MATRICES OVER THE COMPLEX NUMBER FIELD AND THE QUATERNION DIVISION ALGEBRA

  • Jiang, Zhao-Lin;Liu, San-Yang
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.81-96
    • /
    • 2004
  • The level-m scaled circulant factor matrix over the complex number field is introduced. Its diagonalization and spectral decomposition and representation are discussed. An explicit formula for the entries of the inverse of a level-m scaled circulant factor matrix is presented. Finally, an algorithm for finding the inverse of such matrices over the quaternion division algebra is given.

REPRESENTATION OF INTUITIONISTIC FUZZY SOFT SET USING COMPLEX NUMBER

  • KHAN, MOHSIN
    • Journal of applied mathematics & informatics
    • /
    • 제35권3_4호
    • /
    • pp.331-347
    • /
    • 2017
  • Soft sets are fantastic mathematical tools to handle imprecise and uncertain information in complicated situations. In this paper, we defined the hybrid structure which is the combination of soft set and complex number representation of intuitionistic fuzzy set. We defined basic set theoretic operations such as complement, union, intersection, restricted union, restricted intersection etc. for this hybrid structure. Moreover, we developed this theory to establish some more set theoretic operations like Disjunctive sum, difference, product, conjugate etc.

복소수 개념의 발달과 교육적 함의 (Development of the concept of complex number and it's educational implications)

  • 이동환
    • 한국수학사학회지
    • /
    • 제25권3호
    • /
    • pp.53-75
    • /
    • 2012
  • 본 논문은 복소수 개념이 정당화되는 과정에서 실수와 허수 사이의 관계가 어떻게 변화했는지를 살펴보았다. 허수가 처음 등장한 16세기에 수학자들은 현재와 동일하게 허수를 계산할 수 있었지만 허수를 수학적 대상으로 인정하기까지는 200여년의 시간이 필요했다. 수학이 발달하면서 나타나는 새로운 문제 상황이 실수와 허수의 조화를 요구하였고, 그 결과 복소수의 개념이 점차 명확해졌다. 복소수 개념 발달의 역사는 실수와 허수의 대립이 해소되어 실수와 허수를 복소수로 포괄할 수 있는 관점을 찾아가는 과정이었다. 실수와 허수가 어떤 점에서 대립을 하였고, 수학자들은 이러한 대립에 어떻게 대처하였는가에 분석의 초점을 두고, 실수와 허수의 관계를 정립하는 과정에서 나타난 새로운 사고방식이나 관점을 확인하고 그 영향을 살펴본다. 그리고 이러한 분석결과가 보여주는 교육적 함의를 기술하였다.

Redundant binary 연산을 이용한 고속 복소수 승산기 (A high-speed complex multiplier based on redundant binary arithmetic)

  • 신경욱
    • 전자공학회논문지C
    • /
    • 제34C권2호
    • /
    • pp.29-37
    • /
    • 1997
  • A new algorithm and parallel architecture for high-speed complex number multiplication is presented, and a prototype chip based on the proposed approach is designed. By employing redundant binary (RB) arithmetic, an N-bit complex number multiplication is simplified to two RB multiplications (i.e., an addition of N RB partial products), which are responsible for real and imaginary parts, respectively. Also, and efficient RB encoding scheme proposed in this paper enables to generate RB partial products without additional hardware and delay overheads compared with binary partial product generation. The proposed approach leads to a highly parallel architecture with regularity and modularity. As a results, it results in much simpler realization and higher performance than the classical method based on real multipliers and adders. As a test vehicle, a prototype 8-b complex number multiplier core has been fabricated using $0.8\mu\textrm{m}$ CMOS technology. It contains 11,500 transistors on the area of about $1.05 \times 1.34 textrm{mm}^2$. The functional and speed test results show that it can safely operate with 200 MHz clock at $V_{DD}=2.5 V$, and consumes about 90mW.

  • PDF